Loading...
Effect of Zn/Sn ratio on perovskite solar cell performance applying off-stoichiometric Cu2ZnSnS4/Carbon hole-collecting electrodes
Heidariramsheh, M ; Sharif University of Technology | 2022
110
Viewed
- Type of Document: Article
- DOI: 10.1021/acsami.2c00206
- Publisher: American Chemical Society , 2022
- Abstract:
- Low-cost inorganic hole-transporting materials (HTMs) accompanied by a printable carbon electrode is an efficient approach to address the limitation of material cost of perovskite solar cells (PSCs) and get this technology closer to commercialization. The present work is focused on optimizing the Zn/Sn ratio of Cu2ZnSnS4/carbon hole collectors in n-i-p structured PSCs, where CuInS2/carbon is applied as the reference hole collector. This composition regulation is a solution to address the challenge of composition-related defects of the Cu2ZnSnS4 (CZTS) material. The Zn/Sn ratio was tuned by the initial proportion of the zinc precursor during the nanoparticle (NP) synthesis using a heating-up procedure. It was found that the enhancement of the Zn/Sn ratio leads to a gradual increase of the optical band gap. More importantly, an increased density of B-type defect clusters [2ZnCu + ZnSn] is confirmed using Raman results. Additionally, results from the cyclic voltammetry measurement show that by increasing the Zn/Sn value, the highest occupied molecular orbital (HOMO) of HTM is pulled down. These data match the upward trend of photovoltage. CZTS HTM with an optimal Zn/Sn ratio of 1.5 has a compatible energy level, along with the features of uniform and smooth coverage. The best efficiency of about 14.86% was obtained for optimal CZTS/carbon-based PSCs, which reaches from 14.86 to 15.49% after 25 days of aging. © 2022 American Chemical Society
- Keywords:
- Carbon ; Chalcogenide semiconductor ; Cu2ZnSnS4 ; Hole-transporting material ; Copper compounds ; Costs ; Cyclic voltammetry ; Defects ; Electrodes ; Energy gap ; Hole mobility ; Molecular orbitals ; Perovskite ; Perovskite solar cells ; Synthesis (chemical) ; Tin compounds ; Zinc compounds ; Carbon electrode ; Chalcogenide semiconductors ; Composition regulation ; Hole collector ; Hole-transporting materials ; Inorganics ; Low-costs ; Material cost ; SN ratio ; Solar cell performance ; Carbon
- Source: ACS Applied Materials and Interfaces ; Volume 14, Issue 15 , 2022 , Pages 17296-17311 ; 19448244 (ISSN)
- URL: https://pubs.acs.org/doi/10.1021/acsami.2c00206
