Loading...
Efficiency of mechanochemical ball milling technique in the preparation of fe/tio2 photocatalysts
Taghipour, S ; Sharif University of Technology | 2022
47
Viewed
- Type of Document: Article
- DOI: 10.3390/chemengineering6050077
- Publisher: MDPI , 2022
- Abstract:
- Rapid population growth and widespread industrialization are the main contributing factors to the increasing contamination of the world’s diminishing freshwater resources. This work investigates Fe/TiO2 as an efficient and sustainable photocatalyst for treating organic micropollutants in water. The photocatalysts prepared by these mechanochemical methods used a high-energy ball milling technique to manipulate Fe/TiO2’s structural, optical, and catalytic properties for the photo-oxidation of 2,4-Dichlorophenol (2,4-DCP). Doping with iron effectively reduced the band gap of rutile TiO2 from 3 to 2.22 eV. By reducing the ball/powder ratio from 34 to 7, the removal efficiency of 2,4-DCP increased from 65.2 to 84.7%. Measuring the TOC indicated 63.5 and 49.4% mineralization by Fe/TiO2-7 and rutile TiO2, respectively, after 24 h. The energy yields for the Fe/TiO2 and rutile TiO2 were 0.13 and 0.06 g 2,4-DCP/kW h, respectively. © 2022 by the authors
- Keywords:
- Ball milling ; Doping ; Efficiency ; Photocatalyst ; TiO2/Fe
- Source: ChemEngineering ; Volume 6, Issue 5 , 2022 ; 23057084 (ISSN)
- URL: https://www.mdpi.com/2305-7084/6/5/77