Loading...
Search for: bioactive-glass
0.005 seconds
Total 39 records

    Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites [electronic resource]

    , Article Journal of Materials Science and Engineering: C ; 10 October 2011, Volume 31, Issue 7, Pages 1526–1533 Tamjid, E ; Bagheri, R ; Vossoughi, M ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    Polycaprolactone (PCL) composite films containing 5 wt.% bioactive glass (BG) particles of different sizes (6 μm, 250 nm, < 100 nm) were prepared by solvent casting methods. The ultra-fine BG particles were prepared by high-energy mechanical milling of commercial 45S5 Bioglass® particles. The characteristics of bioactive glass particles were studied by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and X-ray diffraction (XRD) methods. In vitro bioactivity of the PCL/BG composite films was evaluated through immersion in the simulated body fluid (SBF). The films were analyzed by FE-SEM, energy dispersive... 

    Glass-ceramics for cancer treatment: So close, or yet so far?

    , Article Acta Biomaterialia ; 2018 ; 17427061 (ISSN) Miola, M ; Pakzad, Y ; Banijamali, S ; Kargozar, S ; Vitale Brovarone, C ; Yazdanpanah, A ; Bretcanu, O ; Ramedani, A ; Vernè, E ; Mozafari, M ; Sharif University of Technology
    Abstract
    After years of research on the ability of glass-ceramics in bone regeneration, this family of biomaterials has shown revolutionary potentials in a couple of emerging applications such as cancer treatment. Although glass-ceramics have not yet reached their actual potential in cancer therapy, the relevant research activity is significantly growing in this field. It has been projected that this idea and the advent of magnetic bioactive glass-ceramics and mesoporous bioactive glasses could result in major future developments in the field of cancer. Undoubtedly, this strategy needs further developments to better answer the critical questions essential for clinical usage. This review aims to... 

    Bioglass Coating on 316L Stainless Steel

    , M.Sc. Thesis Sharif University of Technology Pourhashem, Sepideh (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    Bioactive glasses are able to bond to soft and hard tissues in living body and their application as coating on metallic implants like 316L stainless steel has two important effects: (1) intimate link between bone and materials and (2) corrosion protection of metallic implant in body fluid and protection from tissues in front of corrosion products. Therefore, in this research, 45S5 bioactive glass prepared via sol- gel method was dip coated on 316L stainless steel substrates and its characteristics was investigated.Results of phase analysis showed that by sintering 45S5 bioglass at 600 ˚C for 5 h, an amorph sample with small amount of Na2Ca2Si3O9 was obtained. So, the bioglass coated samples... 

    Chitosan–Bioactive Glass Composite Coating on Nd-Fe-B Magnetic Alloy Substrate by Electrophoretic Deposition

    , M.Sc. Thesis Sharif University of Technology Mehdipour, Mehrad (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    This research work deals with application of poly-saccharide to improve coating process of bioactive ceramic composite on aNd-Fe-B magnetic alloy substrate. Bioactive glass particles were synthesized through a sol-gel process and coated in the form of composite with poly-saccharide onto a magnetic substrate by electrophoretic deposition technique. Stable suspensions of 0.5 gr/lit polysaccharide polymer-ceramic were prepared using bioactive glass particles (<1µm), acetic acid 1%. The influence of added water to ethanol, pH and tri-ethanol-amine (TEA) additive on suspension stability, deposition rate and coating’s structure was investigated. It was shown that by increasing the water to ethanol... 

    Electrophoretic Deposition of Alginate-Bioglass-Nanodiamond Nanocomposites and Evolution of their Bioactivity

    , M.Sc. Thesis Sharif University of Technology Mansoorianfar, Mojtaba (Author) ; Simchi, Abdollreza (Supervisor)
    Abstract
    Recently, diamond nanoparticles have attracted interest for biomedical applications such as drug delivery, targeted cancer therapies, fabrication of tissue scaffolds and biosensors. In the present work, elecrophoretic deposition (EPD) of nanodiamond-bioactive glass-alginate nanocomposite was studied. In vitro bioactivity and biocompatibility of the nanocomposite were evaluated in simulated body fluid (SBF) and by MTT assay. The EPD process was performed under different conditions in order to obtain a uniform coating on the surface of 316L stainless steel substrate. The stability of the suspension was determined via optical sedimentation method and zeta potential analysis. It was found that... 

    Evaluation of Controlled Drug Release Chitosan-based Coatings on Titanium Implants: Microstructure, Bioactivity and Biocompatibility

    , Ph.D. Dissertation Sharif University of Technology Ordikhani, Farideh (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Implant-associated infections are one of the most serious complications in orthopaedic and trauma surgery as it may result in poor functional outcome, implant failure, chronic osteomyelitis or even death. Great concerns have been taken to reduce implant-associated infections through progressing in operating standards, minimizing the possibility of contamination during surgery, reducing the establishment of infection by perioperative antibiotic prophylaxis, and confining of pathogenic strains by patient isolation. In spite of these preventions, the percentage of postoperative infections is still rising. Composite coatings with bone-bioactivity and drug-eluting capacity are considered as... 

    Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review

    , Article Polymer Reviews ; Volume 58, Issue 1 , 2018 , Pages 164-207 ; 15583724 (ISSN) Hajiali, F ; Tajbakhsh, S ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Polycaprolactone (PCL) is a bioresorbable and biocompatible polymer that has been widely used in long-term implants and controlled drug release applications. However, when it comes to tissue engineering, PCL suffers from some shortcomings such as slow degradation rate, poor mechanical properties, and low cell adhesion. The incorporation of calcium phosphate-based ceramics and bioactive glasses into PCL has yielded a class of hybrid biomaterials with remarkably improved mechanical properties, controllable degradation rates, and enhanced bioactivity that are suitable for bone tissue engineering. This review presents a comprehensive study on recent advances in the fabrication and properties of... 

    Effects of Sr and Mg dopants on biological and mechanical properties of SiO2–CaO–P2O5 bioactive glass

    , Article Ceramics International ; Volume 46, Issue 14 , 2020 , Pages 22674-22682 Sharifianjazi, F ; Moradi, M ; Abouchenari, A ; Pakseresht, A.H ; Esmaeilkhanian, A ; Shokouhimehr, M ; Shahedi Asl, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, the effects of Sr and Mg were investigated on mechanical and biological properties of 58S bioactive glass (BG). SiO2-P2O5-CaO BG with different contents of Sr and Mg were synthesized via the sol-gel method and immersed in simulated body fluid (SBF) for several days to explore their biocompatibility. Precise analyses of the BG using X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy showed that the Mg-doped BG containing 8 wt % MgO possessed better biocompatibility. It was also found that mechanical properties of the BG could be improved by increasing the amounts of MgO and SrO. Both 5Sr-BG and 8Mg-BG samples did not exhibit any... 

    In vitro bactericidal and drug release properties of vancomycin-amino surface functionalized bioactive glass nanoparticles

    , Article Materials Chemistry and Physics ; Volume 241 , 2020 Zarghami, V ; Ghorbani, M ; Bagheri, K.P ; Shokrgozar, M. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Bioactive glass has been used clinically in bone repair applications for bone grafting because of its prominent physiochemical and osteogenic properties. Various attempts have been made to enhance bioactive glass efficiency in combination with other biomaterials such as antibiotics and growth factors. In present study, we developed a modification of bioactive glass nanoparticles that insured long term antibacterial effect. Bioactive glass nanoparticles (BGNs) were functionalized with (3-Aminopropyl) triethoxysilane (APTS), then vancomycin (VAN) was immobilized onto BGNs-APTS via EDC/NHS cross-linking process. Another study group namely BGNs-VAN was synthesized as a control group without any... 

    Effect of Bioglass Particle Size and Titania Morphology on the Bioactivity and Kinetics of Tissue Growth in Three-Dimensional Poly(ɛ-Caprolactone) Scaffolds with Controlled Pore Structure Produced by 3D-Printing Process

    , Ph.D. Dissertation Sharif University of Technology Tamjid Shabestary, Elnaz (Author) ; Bagheri, Reza (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Simchi, Abdolreza (Co-Advisor)
    Abstract
    Polycaprolactone (PCL) scaffolds and its composites containing bioactive glass particles (45S5) and TiO2 nanostructures with pre-defined and controlled external and internal architecture were prepared via an indirect three-dimensional (3D) printing process. The scaffolds had an interconnected structure with macro- (400-500 μm) and micro- (~25 μm) pores. Bioactivity, mechanical behavior and kinetics of tissue growth in 3D scaffolds were studied. The size effect of biogactive glass particles (6 μm, 250 nm, <100 nm) and morphology of titania nanostructures (spherical, tube, leaf-like, and flower-like particles) were elaborated. The biogactive glass particles with different sizes were prepared... 

    Surface Modification of Metallic Implants and Improvement of their Biological Properties in Presence of Bioactive Ceramic Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Riahi, Zohreh (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    By consideration of increasing demands to use implants and efforts to get technical knowledge and localization of this implants, considerable research in this field is needed. Therefore, presentation of a coating which is able to provide parameters needed for an acceptable implant is the aim of this study. In this direction, modification of surface of metallic implants in order to achieve nanotubes of titanium oxide, with the purpose of providing biocompatibility was done. On the other hand, because chronic infection of the implant’s surrounding is one of the main important reasons in rejection of implants, 〖TiO〗_2 nanotubes as a drug carrier were used in order to solve this problem. So,... 

    Design and Fabrication of Mineral-based Porous Microcarrier for Bone Tissue Regeneration

    , M.Sc. Thesis Sharif University of Technology Haji Abbas, Mohammad Ali (Author) ; Mashayekhan, Shohreh (Supervisor) ; Bahrevari, Mohammad Reza (Co-Supervisor)
    Abstract
    Currently, using biocompatible and injectable polymeric microcarriers as one of the efficient methods to transfer cells and active agents has gained much attention for bone regenerative medicine. However, they have some drawbacks such as weak mechanical stability and lack of mineral materials, which are the major ingredients of the bone tissues. Accordingly, it is expected that mimicking the chemical and physical structure of bone tissues could be valuable in their medical applications. Herein, a new porous biodegradable microcarriers (MCs) made of silk fibroin-oxidized alginate-bioactive glass was fabricated by electrospraying method. Response surface methodology (RSM) was used to study the... 

    Design of Microfluidic Chip for 3D Cell Culture

    , M.Sc. Thesis Sharif University of Technology Ghobadi, Faezeh (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Understanding biological systems requires extensive knowledge of individual parameters, and to study the processes of cell differentiation and cell behavior, a suitable environment must be created with the physiological conditions of the human body. For this purpose, with the knowledge of microfluidics, a microenvironment can be provided to study the behavior of cells on a small scale. The use of bone tissue model microfluidic chips is an alternative and new method in which it is possible to study the behavior of cells to differentiate into bone and to examine the toxicity of drugs, which in itself can help in the effective and successful treatment of these cases show. Therefore, in this... 

    Design and Optimization of Hydrofiber Dressings Containing Borosilicate Bioactive Glass Doped with Zinc for Wound Healing

    , M.Sc. Thesis Sharif University of Technology Motahari, Morteza (Author) ; Mashayekhan, Shohreh (Supervisor) ; Karimi, Afzal (Supervisor)
    Abstract
    Wound healing is a complex and regular process. It makes more challenge when the volume of wound exudate becomes uncontrollable. To solve this problem, hydrofiber wound dressings which contain carboxymethyl cellulose fibers are being used. Fast absorption and keeping the moisture in balance specially in chronic wounds, is one of the major features of hydrofiber wound dressings. In this research, which was conducted with the aim of investigating the synergy effect of active glasses and Hydrofiber commercial wound dressing for the healing of skin wounds, especially chronic wounds, the sol-gel method has been used to synthesize bioactive glasses based on borosilicate, replacing a part of CaO... 

    Fabrication of Bioactive Bone Cement

    , M.Sc. Thesis Sharif University of Technology Mansoori Kermani, Amir Reza (Author) ; Bahrevari, Mohammad Reza (Supervisor) ; Mashayekhan, Shohreh (Supervisor) ; Abd Khodaei, Mohammad Jafar (Supervisor)
    Abstract
    PMMA bone cement lacks biodegradability and the ability to bond with surrounding bone tissue. Therefore, the development of a new generation of bioactive bone cements that are biodegradable and possess adequate mechanical properties as well as desirable setting time is receiving remarkable interest.In this study, we have developed novel mineral-based bioactive bone cements. Our mineral bioactive bone cements were composed of Calcium Sulfate Hemihydrate, Bioactive Glass, and Tricalcium Silicate. Firstly, a binary system composed of Calcium Sulfate Hemihydrate and Bioactive Glass was optimized based on mechanical and setting behavior. Secondly, Tricalcium Silicate was added to the powder phase... 

    Simultaneous evaluation of magnesia and silica contents’ effect on in-vitro bioactivity of novel bioglasses in the SiO2-CaO-MgO system

    , Article Transactions of the Indian Ceramic Society ; Volume 75, Issue 1 , 2016 , Pages 7-11 ; 0371750X (ISSN) Eslami, M ; Mahdieh, Z ; Maddahi, V ; Shokrgozar, M. A ; Mehrjoo, M ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    In this study, bioglasses in SiO2-CaO-MgO system were synthesized through sol-gel method and the effect of silica and magnesia contents on in-vitro bioactivity of the bioglasses were investigated. XRD patterns showed an amorphous structure after heat treatment at 600°C for 2 h for all glasses and also indicated that after immersion in SBF, apatite particles precipitated on glass surfaces and the rate of apatite formation decreased with increasing Mg/Ca ratio. On the other hand, the apatite formation rate was enhanced with increasing the silica content. Furthermore, magnesia contents increased the compressive strength of the samples. According to SEM, higher Mg/Ca ratio led to increase in... 

    Radiopaque crystalline, non-crystalline and nanostructured bioceramics

    , Article Materials ; Volume 15, Issue 21 , 2022 ; 19961944 (ISSN) Montazerian, M ; Gonçalves, G. V. S ; Barreto, M. E. V ; Lima, E. P. N ; Cerqueira, G. R. C ; Sousa, J. A ; Malek Khachatourian, A ; Souza, M. K. S ; Silva, S. M. L ; Fook, M. V. L ; Baino, F ; Sharif University of Technology
    MDPI  2022
    Abstract
    Radiopacity is sometimes an essential characteristic of biomaterials that can help clinicians perform follow-ups during pre- and post-interventional radiological imaging. Due to their chemical composition and structure, most bioceramics are inherently radiopaque but can still be doped/mixed with radiopacifiers to increase their visualization during or after medical procedures. The radiopacifiers are frequently heavy elements of the periodic table, such as Bi, Zr, Sr, Ba, Ta, Zn, Y, etc., or their relevant compounds that can confer enhanced radiopacity. Radiopaque bioceramics are also intriguing additives for biopolymers and hybrids, which are extensively researched and developed nowadays for... 

    Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study

    , Article Applied Surface Science ; Volume 258, Issue 24 , 2012 , Pages 9832-9839 ; 01694332 (ISSN) Mehdipour, M ; Afshar, A ; Mohebali, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this research, submicron bioactive glass (BG) particles were synthesized by a sol-gel process and were then coated on a 316L stainless steel substrate using an electrophoretic deposition (EPD) technique. Stable suspension of bioactive glass powders in ethanol solvent was prepared by addition of triethanol amine (TEA), which increased zeta potential from 16.5 ± 1.6 to 20.3 ± 1.4 (mv). Thickness, structure and electrochemical behavior of the coating were characterized. SEM studies showed that increasing EPD voltage leads to a coating with more agglomerated particles, augmented porosity and micro cracks. The results of Fourier transformed infrared (FTIR) spectroscopy revealed the adsorption... 

    Bioactive Nanocomposite Coatings Containing Anti-Bacterial Factors with Controlled Release on the Bone Implant

    , Ph.D. Dissertation Sharif University of Technology Zarghami, Vahid (Author) ; Ghorbani, Mohammad (Supervisor) ; Shokrgozar, Mohammad Ali (Supervisor) ; Pooshang Bagheri, Kamran (Co-Supervisor)
    Abstract
    Aseptic loosening and infection are two major problems of bone implants. Aseptic loosening occurs due to poor cell growth and poor adhesion to the implant surface over time. Bone infection at the implant site occurs mainly by the staphylococcus aureus bacteria. In some cases, infection occurs in the short term and in the early times after implantation, and in some cases, infection occurs in later times. The aim of this study is to synthesize and evaluate antibacterial coatings, while having cell growth-promoting components and cell differentiation to solve bone implant problems simultaneously. Also, the issue of bacterial resistance to antibiotics and their risks in bone implants is another... 

    Synthesis, Characterization and Application of Porous Bioactive Glasses-Based Nanostructures in Bone Tissue Engineering

    , Ph.D. Dissertation Sharif University of Technology Aldhaher, Abdullah (Author) ; Bagherzadeh, Mojtaba (Supervisor) ; Baheiraei, Nafiseh (Co-Supervisor)
    Abstract
    In the upcoming research, with the aim of bone tissue engineering and achieving a new structure, a scaffold based on polyhema (PHEMA) and gelatin (Gel), which are biocompatible polymers for bone tissue, was made and evaluated. Also, in order to improve the bioactivity and mechanical properties, bioactive glass alone (BG45S5) or together with strontium (BG-Sr) was used in the scaffold structure. and chemical by conducting FTIR, XRD, SEM, mechanical strength, bioactivity measurement, contact angle, water absorption and degradation tests. Biological investigations were done using mesenchymal stem cells derived from human bone marrow and with the help of MTT evaluations and SEM photography. The...