Loading...
Search for: analytical-results
0.009 seconds
Total 86 records

    On the stability issues for fuzzy large-scale systems

    , Article Fuzzy Sets and Systems ; Volume 174, Issue 1 , July , 2011 , Pages 31-49 ; 01650114 (ISSN) Zamani, I ; Sadati, N ; Zarif, M. H ; Sharif University of Technology
    2011
    Abstract
    The main objective of this paper is to investigate the stability and stabilization problem of fuzzy large-scale systems in which the system is composed of a number of Takagi-Sugeno fuzzy subsystems with interconnection. Instead of fuzzy parallel distributed compensation (PDC) design, nonlinear state feedback controllers are used in stabilization of the overall large-scale system. Based on Lyapunov stability theory, linear matrix inequalities (LMIs) conditions are derived for asymptotic and exponential stability. Two numerical examples are given to confirm the analytical results and illustrate the effectiveness of the proposed strategy  

    LBM simulation of electro-osmotic flow (EOF) in nano/micro scales porous media with an inclusive parameters study

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 7 , November , 2014 ; ISBN: 9780791849545 Zakeri, R ; Lee, E. S ; Salimi, M. R ; Sharif University of Technology
    Abstract
    In this paper, we present our results about simulation of 2D-EOF in Nano/Micro scales porous media using lattice Boltzmann method (LBM) in micro-channel for EOF. The high efficient numerical code use strongly high nonlinear Poisson Boltzmann equation to predicate behavior of EOF in complex geometry. The results are developed with precisely investigation of several effective parameters on permeability of EOF, such as geometry (channel height and number and location of charge), external electric field, thickness of Debye length (ionic concentration), and zeta potential. Our results are in excellent agreement with available analytical results. Our results show that for certain external electric... 

    Analytical modeling of magnetic flux in superconducting synchronous machine

    , Article IEEE Transactions on Applied Superconductivity ; Volume 23, Issue 1 , 2013 ; 10518223 (ISSN) Yazdanian, M ; Elhaminia, P ; Zolghadri, M. R ; Fardmanesh, M ; Sharif University of Technology
    2013
    Abstract
    A general model for superconducting synchronous machines in which the rotor can be considered as a magnetic or a nonmagnetic material is proposed and analytically investigated. Analytical equations for magnetic flux in different regions of the machine have been developed. Furthermore, nonlinear magnetization of the iron core is studied. In order to solve the equations in the case of the iron saturation, a reiterative algorithm is proposed. Finite-element simulation has also been performed to verify the equations and the proposed algorithm. The obtained analytical results show good agreement with finite-element method results  

    Secure two-party computation using an efficient garbled circuit by reducing data transfer

    , Article 8th International Conference on Applications and Techniques in Information Security, ATIS 2017, 6 July 2017 through 7 July 2017 ; Volume 719 , 2017 , Pages 23-34 ; 18650929 (ISSN); 9789811054204 (ISBN) Yalame, M. H ; Farzam, M. H ; Bayat Sarmadi, S ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Secure computation has obtained significant attention in the literature recently. Classic architectures usually use either the Garbled Circuit (GC) or the Goldreich-Micali-Wigderson (GMW) protocols. So far, to reduce the complexity of communications in these protocols, various methods have been proposed. The best known work in both methods reduces the communication up to almost 2k-bits (k is the symmetric security parameter) for each AND gate, and using XOR gate is free. In this paper, by combining GC and GMW, we propose a scheme in the semi-honest adversary model. This scheme requires an Oblivious Transfer (OT) and a 2-bit data transfer for each AND gate, keeping XOR gates free. The... 

    A low cost Hydrokinetic Wells turbine system for oceanic surface waves energy harvesting

    , Article Renewable Energy ; Volume 156 , 2020 , Pages 610-623 Valizadeh, R ; Abbaspour, M ; Taeibi Rahni, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper provides a feasibility study on a low cost system called Hydrokinetic Wells turbine for surface wave energy conversion without using plenum chambers. The elimination of the plenum chamber and its complicated valve systems can reduce the expenses of wave energy conversion up to 23%.The feasibility process were done for high and low frequency conditions. For the low frequency waves, we offer the 300 rpm angular velocity as an optimum selection for further studies. For the high frequency condition a reliable analytical approach based on validated methods was developed. The analytical results indicate that a wells turbine with 60 cm diameter could produce up to 1600 Watts power in... 

    Maximal bound for output feedback gain in stabilization of fixed points of fractional-order chaotic systems

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 6, Issue 3 , February , 2011 ; 15551415 (ISSN) Tavazoei, M. S ; Sharif University of Technology
    2011
    Abstract
    This paper deals with the problem of stabilizing the unstable fixed points of a class of fractional-order chaotic systems via using static output feedback. At first, a static output feedback controller designed to stabilize a fixed point of a fractional-order chaotic system is considered. Then, the maximal allowable perturbation bound around the nominal value of the output feedback gain of the designed controller, such that the stability of the intended fixed point in the closed-loop system is guaranteed, is analytically determined. Also, some numerical examples are presented to confirm the validity of the analytical results of the paper  

    More details on analysis of fractional-order Van der Pol oscillator

    , Article JVC/Journal of Vibration and Control ; Volume 15, Issue 6 , 2009 , Pages 803-819 ; 10775463 (ISSN) Tavazoei, M. S ; Haeri, M ; Attari, M ; Bolouki, S ; Siami, M ; Sharif University of Technology
    2009
    Abstract
    This paper is devoted to the analysis of fractional order Van der Pol system studied in the literature. Based on the existing theorems on the stability of incommensurate fractional order systems, we determine parametric range for which a fractional order Van der Pol system with a specific order can perform as an undamped oscillator. Numerical simulations are presented to support the given analytical results. These results also illuminate a main difference between oscillations in a fractional order Van der Pol oscillator and its integer order counterpart. We show that contrary to integer order case, trajectories in a fractional Van der Pol oscillator do not converge to a unique cycle. © 2009... 

    analytical calculation of energy levels of mono- and bilayer graphene quantum dots used as light absorber in solar cells

    , Article Applied Physics A: Materials Science and Processing ; Volume 122, Issue 1 , 2016 , Pages 1-8 ; 09478396 (ISSN) Tamandani, S ; Darvish, G ; Faez, R ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    In this paper by solving Dirac equation, we present an analytical solution to calculate energy levels and wave functions of mono- and bilayer graphene quantum dots. By supposing circular quantum dots, we solve Dirac equation and obtain energy levels and band gap with relations in a new closed and practical form. The energy levels are correlated with a radial quantum number and radius of quantum dots. In addition to monolayer quantum dots, AA- and AB-stacked bilayer quantum dots are investigated and their energy levels and band gap are calculated as well. Also, we analyze the influence of the quantum dots size on their energy spectrum. It can be observed that the band gap decreases as quantum... 

    Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method

    , Article Microsystem Technologies ; 2016 , Pages 1-14 ; 09467076 (ISSN) Tajaddodianfar, F ; Hairi Yazdi, M. R ; Nejat Pishkenari, H ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Due to various sources of nonlinearities, micro/nano-electro-mechanical-system (MEMS/NEMS) resonators present highly nonlinear behaviors including softening- or hardening-type frequency responses, bistability, chaos, etc. The general Duffing equation with quadratic and cubic nonlinearities serves as a characterizing model for a wide class of MEMS/NEMS resonators as well as lots of other engineering and physical systems. In this paper, after brief reviewing of various sources of nonlinearities in micro/nano-resonators and discussing how they contribute to the Duffing-type nonlinearities, we propose a Homotopy Analysis Method (HAM) approach for derivation of analytical solutions for the... 

    Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method

    , Article Microsystem Technologies ; Volume 23, Issue 6 , 2017 , Pages 1913-1926 ; 09467076 (ISSN) Tajaddodianfar, F ; Hariri Yazdi, M. R ; Nejat Pishkenari, H ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Due to various sources of nonlinearities, micro/nano-electro-mechanical-system (MEMS/NEMS) resonators present highly nonlinear behaviors including softening- or hardening-type frequency responses, bistability, chaos, etc. The general Duffing equation with quadratic and cubic nonlinearities serves as a characterizing model for a wide class of MEMS/NEMS resonators as well as lots of other engineering and physical systems. In this paper, after brief reviewing of various sources of nonlinearities in micro/nano-resonators and discussing how they contribute to the Duffing-type nonlinearities, we propose a Homotopy Analysis Method (HAM) approach for derivation of analytical solutions for the... 

    Analytical cubic solution to weakly nonlinear interactions between surface and interfacial waves

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 31 May 2009 through 5 June 2009, Honolulu, HI ; Volume 6 , 2009 , Pages 625-630 ; 9780791843468 (ISBN) Tahvildari, N ; Jamali, M ; Sharif University of Technology
    Abstract
    Resonant interaction between one surface wave and two oblique interfacial waves is analyzed in a three dimensional system of a finite-depth, two-layer fluid. A third order perturbation analysis is carried out to obtain the evolution equations of the waves amplitudes. Taking the waves amplitudes as the perturbation small parameter, the evolution equations of the waves are solved simultaneously to obtain the short and long term behavior of the interfacial waves. In contrast to the second order analysis, the current analysis shows that after an initial exponential growth period, the interfacial waves stop growing and stabilize. Furthermore, the influences of surface wave frequency, density... 

    An asymmetric checkpointing and rollback error recovery scheme for embedded processors

    , Article 23rd IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, DFT 2008, Boston, MA, 1 October 2008 through 3 October 2008 ; October , 2008 , Pages 445-453 ; 15505774 (ISSN) Tabkhi, H ; Miremadi, S. G ; Ejlali, A ; Sharif University of Technology
    2008
    Abstract
    This paper presents a checkpointing scheme for rollback error recovery, called Asymmetric Checkpointing and Rollback Recovery (ACRR) which stores the processor states in an asymmetric manner. In this way, error recovery latency and the number of checkpoints are reduced to increase the probability of timely task completion for soft real-time applications. To evaluate the ACRR, this scheme was studied analytically. The analytical results show that the recovery latency is reduced as non-uniformity of the checkpoint increases. As a case study, the ACRR is implemented and simulated on a behavioral VHDL model of LEON2 processor. The simulation results follow the results obtained in the analytical... 

    Analytical and numerical biaxial bending analysis of deepwater riser due to vortex-induced vibration

    , Article Journal of Marine Science and Technology (Japan) ; 2021 ; 09484280 (ISSN) Tabeshpour, M. R ; Komachi, Y ; Sharif University of Technology
    Springer Japan  2021
    Abstract
    Previous studies of analysis and prediction of marine risers responses usually focus on vortex-induced vibration (VIV) of cross-flow (CF) direction rather than in-line (IL). Recent studies show that responses of IL direction tend to dominate in some cases. Responses of long riser due to biaxial bending of IL and CF VIV are investigated. Closed-form formulas are derived for estimating maximum normal stress due to the biaxial moment of CF/IL VIV and relations for estimating biaxial stress using CF values are presented. Analytical results are compared with numerical results of the time domain model and a good correlation is observed. It is shown that for tension and bending-controlled modes of... 

    Analytical and numerical biaxial bending analysis of deepwater riser due to vortex-induced vibration

    , Article Journal of Marine Science and Technology (Japan) ; Volume 27, Issue 1 , 2022 , Pages 492-507 ; 09484280 (ISSN) Tabeshpour, M. R ; Komachi, Y ; Sharif University of Technology
    Springer Japan  2022
    Abstract
    Previous studies of analysis and prediction of marine risers responses usually focus on vortex-induced vibration (VIV) of cross-flow (CF) direction rather than in-line (IL). Recent studies show that responses of IL direction tend to dominate in some cases. Responses of long riser due to biaxial bending of IL and CF VIV are investigated. Closed-form formulas are derived for estimating maximum normal stress due to the biaxial moment of CF/IL VIV and relations for estimating biaxial stress using CF values are presented. Analytical results are compared with numerical results of the time domain model and a good correlation is observed. It is shown that for tension and bending-controlled modes of... 

    Asymptotic swarm stability of fractional-order swarm systems in the presence of uniform time-delays

    , Article International Journal of Control ; Nov , 2015 , Pages 1-10 ; 00207179 (ISSN) Soorki, M. N ; Tavazoei, M. S ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    In this paper, asymptotic swarm stability of fractional-order swarm systems in the presence of uniform time-delays is studied. By using a frequency domain approach, the necessary and sufficient condition on the values of time-delay is derived to guarantee the asymptotic swarm stability under a directed/undirected interaction graph. Numerical examples are given to confirm the obtained analytical results  

    Analysis of the downlink saturation throughput of an asymmetric IEEE 802.11n-based WLAN

    , Article 2016 IEEE International Conference on Communications, ICC 2016, 22 May 2016 through 27 May 2016 ; 2016 ; 9781479966646 (ISBN) Soleymani, M ; Maham, B ; Ashtiani, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Frame aggregation (FA) mechanisms improve the throughput of WLANs. In this paper, the effect of the FA mechanism on the throughput of wireless local area networks (WLANs) has been investigated. To this end, we propose an analytical model in order to analyze an IEEE 802.11n network comprised of an access point (AP) and several conventional nodes (CNs), all in the coverage area of each other. With respect to the heavier download traffic compared to the upload one, in our scenario, only the AP uses an FA mechanism and the other nodes use the basic IEEE 802.11 standard. In our proposed analytical model, the maximum downlink (DL) throughput is derived. Regarding the asymmetry among nodes, our... 

    Compensation of nonlinearity impairments in coherent optical OFDM systems using multiple optical phase conjugate modules

    , Article Journal of Optical Communications and Networking ; Vol. 6, Issue 6 , June , 2014 , pp. 549-558 ; ISSN: 19430620 Shoreh, M. H ; Sharif University of Technology
    Abstract
    In this paper, we propose utilizing multiple optical phase conjugate (OPC) modules along fiber spans, in order to improve the performance of coherent optical orthogonal frequency division multiplexing (CO-OFDM) communication systems in long-haul fiber-optic channels. The role of OPC in CO-OFDM systems is investigated by formulating the four-wave mixing (FWM) process generated along a CO-OFDM with two and three OPCs. Analytical results reveal that increasing the number of OPC modules reduces the average FWM power along the transmission link and as a result mitigates the degrading effect of interaction between amplified spontaneous emission noise and FWM. The proposed schemes have also been... 

    Analytical and learning-based spectrum sensing time optimisation in cognitive radio systems

    , Article IET Communications ; Volume 7, Issue 5 , 2013 , Pages 480-489 ; 17518628 (ISSN) Shokri Ghadikolaei, H ; Abdi, Y ; Nasiri Kenari, M ; Sharif University of Technology
    2013
    Abstract
    In this study, the average throughput maximisation of a secondary user (SU) by optimising its spectrum sensing time is formulated, assuming that a priori knowledge of the presence and absence probabilities of the primary users (PUs) is available. The energy consumed to find a transmission opportunity is evaluated, and a discussion on the impacts of the number of PUs on SU throughput and consumed energy are presented. To avoid the challenges associated with the analytical method, as a second solution, a systematic adaptive neural network-based sensing time optimisation approach is also proposed. The proposed scheme is able to find the optimum value of the channel sensing time without any... 

    Analyzing the price skimming strategy for new product pricing

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 2099-2108 ; 10263098 (ISSN) Shavandi, H ; Zare, A. G ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    This article presents a new model for pricing a new product considering a skimming pricing strategy in the presence of competition. We consider two periods for price setting, including skimming and an economy period. The problem is to decide on skimming as well as economy price, in order to maximize total profit. The derived model is a non-linear programming model and we have analyzed the structure and properties of an optimal solution to develop a solution method. Analytical results, as well as managerial insights, are presented by mathematical and numerical analyses  

    Price skimming strategy for new product development

    , Article ICORES 2012 - Proceedings of the 1st International Conference on Operations Research and Enterprise Systems ; 2012 , Pages 108-113 ; 9789898425973 (ISBN) Shavandi, H ; Zare, A. G ; Inst. Syst. Technol. Inf., Control Commun. (INSTICC) ; Sharif University of Technology
    2012
    Abstract
    This article presents a new model for pricing a new product considering skimming pricing strategy in the presence of the competition. We consider two periods for price setting including skimming and economy period. The problem is deciding on a skimming price as well as an economy price in order to maximize the total profit. The derived model is a non-linear programming model and we analyzed the structure and properties of optimal solution to develop a solution method. Analytical results as well as managerial insights are presented by mathematical analysis and numerical analysis