Loading...
Search for: gait-analysis
0.006 seconds
Total 38 records

    A novel hardware implementation for joint heart rate, respiration rate, and gait analysis applied to body area networks

    , Article Proceedings - IEEE International Symposium on Circuits and Systems ; 2013 , Pages 1889-1892 ; 02714310 (ISSN) ; 9781467357609 (ISBN) Khazraee, M ; Zamani, A. R ; Hallajian, M ; Ehsani, S. P ; Moghaddam, H. A ; Parsafar, A ; Shabany, M ; Sharif University of Technology
    2013
    Abstract
    Continuous and remote monitoring of vital health-related and physical activity signs of a patient is one of the most important technology-oriented applications to monitor the health-care of ill individuals. In this paper, an innovative framework for a wireless Body Area Network (BAN) system, based on the IEEE 802.15.6 standard, with three types of sensors is proposed and implemented. These include Electrocardiogram (ECG), Force Sensitive Resistor (FSR) and Gyroscope. The proposed design is a novel implementation of an embedded system for the real-time processing and analyzing of the ECG signal, gait phases, and detection of the respiration rate from the ECG signal, by means of small... 

    Gait analysis of a six-legged walking robot using fuzzy reward reinforcement learning

    , Article 13th Iranian Conference on Fuzzy Systems, IFSC 2013 ; August , 2013 , Page(s): 1 - 4 ; ISBN: 9781479912278 Shahriari, M ; Khayyat, A. A ; Sharif University of Technology
    IEEE Computer Society  2013
    Abstract
    Free gait becomes necessary in walking robots when they come to walk over discontinuous terrain or face some difficulties in walking. A basic gait generation strategy is presented here using reinforcement learning and fuzzy reward approach. A six-legged (hexapod) robot is implemented using Q-learning algorithm. The learning ability of walking in a hexapod robot is explored considering only the ability of moving its legs and using a fuzzy rewarding system telling whether and how it is moving forward. Results show that the hexapod robot learns to walk using the presented approach properly  

    Studying the effect of kinematical pattern on the mechanical performance of paraplegic gait with reciprocating orthosis

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 226, Issue 8 , 2012 , Pages 600-611 ; 09544119 (ISSN) Nakhaee, K ; Farahmand, F ; Salarieh, H ; Sharif University of Technology
    SAGE  2012
    Abstract
    Paraplegic users of mechanical walking orthoses, e.g. advanced reciprocating gait orthosis (ARGO), often face high energy expenditure and extreme upper body loading during locomotion. We studied the effect of kinematical pattern on the mechanical performance of paraplegic locomotion, in search for an improved gait pattern that leads to lower muscular efforts. A three-dimensional, four segment, six-degrees-of-freedom skeletal model of the advanced reciprocating gait orthosis-assisted paraplegic locomotion was developed based on the data acquired from an experimental study on a single subject. The effect of muscles was represented by ideal joint torque generators. A response surface analysis... 

    Dynamic Simulation of the Biped Normal and Amputee Human Gait

    , M.Sc. Thesis Sharif University of Technology Akbari Shandiz, Mohsen (Author) ; Farahmand, Farzam (Supervisor) ; Zohour, Hassan (Supervisor)
    Abstract
    One of the best methods of gait analysis is to use analytical models. In this project, first, the normal human gait was simulated using a two-dimensional biped model with 7 segments, i.e., a HAT segment representing head, arms and trunk, and 6 segments representing thighs, shanks and feet of the two legs. The foot-ground contact was simulated using a five-point penetration contact model. The elastic impact and friction effects are considered in the ground reaction force modeling. Optimization of the normal human walking model provided constant coefficients for simple PD controllers’ (driving torque) equations that could reasonably reproduce the normal kinematical pattern. Then, in the second... 

    Design and Implementation of a GAIT Analysis System Using Kinect for Clinical Application

    , M.Sc. Thesis Sharif University of Technology Jamali Soosefi, Zahra (Author) ; Behzadipour, Saeed (Supervisor)
    Abstract
    To date various commercial systems were used in the gait analysis area. These systems have some difficulties for clinical use, such as being indwell, making trouble in movement and high prices. The Kinect sensor does not have problems of these systems. If the error of sensor is acceptable, Kinect sensor is a suitable choice for application in clinics. The possibility of utilization of the Kinect sensor as a gait analysis system has been studied in this research. The sensor errors in calculation of gait parameters such as lower limb joints angle, stride time, stride length and spatial coordinates of joints were computed. In previous researches the Kinect sensor error has been calculated for... 

    Design of a Novel Gait Analysis System Using Kinect Sensor for Rehabilitation Applications

    , M.Sc. Thesis Sharif University of Technology Bilesan, Alireza (Author) ; Behzadipour, Saeed (Supervisor)
    Abstract
    To date various commercial systems were used in the gait analysis area. These systems have some difficulties for clinical use, such as being indwell, making trouble in movement and high prices. The Kinect sensor does not have problems of these systems. If the error of sensor is acceptable, Kinect sensor is a suitable choice for application in clinics. The possibility of utilization of the Kinect sensor as a gait analysis system has been studied in this research. The sensor errors in calculation of gait parameters for lower limb joints angle were computed. In previous researches the Kinect sensor error has been calculated for upper limb joints angle and the subject was standing motionless in... 

    The gait and energy efficiency of stance control knee-ankle-foot orthoses: A literature review

    , Article Prosthetics and Orthotics International ; Volume 40, Issue 2 , 2016 , Pages 202-214 ; 03093646 (ISSN) Rafiaei, M ; Bahramizadeh, M ; Arazpour, M ; Samadian, M ; Hutchins, S. W ; Farahmand, F ; Mardani, M. A ; Sharif University of Technology
    SAGE Publications Inc  2016
    Abstract
    Background: The use of knee-ankle-foot orthoses with drop locked knee joints produces some limitations for walking in subjects with quadriceps muscle weakness. The development of stance control orthoses can potentially improve their functionality. Objectives: The aim of this review was to compare the evidence of the effect of stance control orthoses to knee-ankle-foot orthoses with drop locked knee joints in improving kinematic variables and energy efficiency of walking by subjects with quadriceps muscle weakness caused by different pathologies. Study design: Literature review. Methods: Based on selected keywords and their composition, a search was performed in Google Scholar, PubMed,... 

    A study on validating KinectV2 in comparison of Vicon system as a motion capture system for using in Health Engineering in industry

    , Article Nonlinear Engineering ; Volume 6, Issue 2 , 2017 , Pages 95-99 ; 21928010 (ISSN) Jebeli, M ; Bilesan, A ; Arshi, A ; Sharif University of Technology
    Walter de Gruyter GmbH  2017
    Abstract
    The currently available commercial motion capture systems are constrained by space requirement and thus pose difficulties when used in developing kinematic description of human movements within the existing manufacturing and production cells. The Kinect sensor does not share similar limitations but it is not as accurate. The proposition made in this article is to adopt the Kinect sensor in to facilitate implementation of Health Engineering concepts to industrial environments. This article is an evaluation of the Kinect sensor accuracy when providing three dimensional kinematic data. The sensor is thus utilized to assist in modeling and simulation of worker performance within an industrial... 

    Quantitative evaluation of parameters affecting the accuracy of Microsoft Kinect in GAIT analysis

    , Article 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering, ICBME 2016, 23 November 2016 through 25 November 2016 ; 2017 , Pages 306-311 ; 9781509034529 (ISBN) Jamali, Z ; Behzadipour, S ; Sharif University of Technology
    Abstract
    To date various commercial systems have been used in the GAIT analysis. These systems have some difficulties for clinical use, such as interfering with normal movement and high prices. The possibility of utilization of Kinect as a sensor for GAIT analysis has been studied in this research. The accuracy of Kinect in calculation of GAIT parameters such as lower limb joint angles, stride time, and stride length were computed during normal walking. The effects of the sensor's position and direction relative to the walkway were also investigated. The Kinect sensor was installed at different positions toward the motion path. In each position the data was recorded by both Kinect and a commercial... 

    Coordinated activities of trunk and upper extremity muscles during walker-assisted paraplegic gait: A synergy study

    , Article Human Movement Science ; Volume 62 , 2018 , Pages 184-193 ; 01679457 (ISSN) Baniasad, M ; Farahmand, F ; Arazpour, M ; Zohoor, H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Individuals with spinal cord injury (SCI) at lower thoracic levels might walk independently with the aid of mechanical orthoses and walker by using their unimpaired trunk and upper extremity muscles (TUEM). The required motor skills and the associated subtasks of the paraplegic locomotion, however, have not been well understood yet. The purpose of this study was to investigate the coordination of the TUEM activities throughout the paraplegic gait cycle using synergy analysis. For eight paraplegic individuals (30.6 ± 11.6 years; SCI level: T12), the kinematics data and the surface electromyography (EMG) signals of TUEM were recorded during 15 gait cycles. Non-negative matrix factorization... 

    P 043 – Center of pressure progression and ground reaction forces are altered in cerebral palsy crouch gait

    , Article Gait and Posture ; Volume 65 , 2018 , Pages 307-308 ; 09666362 (ISSN) Salehi, A ; Khandan, A ; Arab Baniasad, M ; Baghdadi, S ; Farahmand, F ; Zohoor, H ; Sharif University of Technology
    Elsevier B.V  2018

    P 134 – Absence of the patella has minimal effects on sagittal plane gait parameters

    , Article Gait and Posture ; Volume 65 , 2018 , Pages 462-464 ; 09666362 (ISSN) Baghdadi, S ; Khandan, A ; Arab Baniasad, M ; Darbandi, H ; Vafaei, A. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Patella is the latest addition to the animal's skeleton. It's role in normal walking has not been clearly defined. A 9-year-old girl with congenital absence of the patella was assessed using instrumented gait analysis. The results show a tendency for the limb for external rotation, which is more pronounced during swing. We suggest that the role of the patella is mainly to redirect the force of the quadriceps tendon medially. The classically described role, which is to increase the lever arm of the quadriceps tendon, was not confirmed in this study. © 2018 Elsevier B.V  

    O 027 - There are common patterns of muscle synergy in cerebral palsy crouch gait

    , Article Gait and Posture ; Volume 65 , 2018 , Pages 55-56 ; 09666362 (ISSN) Shojaeefard, M ; Khandan, A ; Baniasad, M. A ; Farahmand, F ; Baghdadi, S ; Vafaei, A ; Narimani, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Background: Muscle synergy is the leading hypothesis on how the central nervous system coordinates limb functions. Cerebral palsy (CP) patients utilize fewer synergies, and are believed to have a simpler neuromuscular control. This study was undertaken to determine whether consistent muscle synergies are recruited during ambulation in cerebral palsy crouch gait and how the muscles contribute to such synergies. Methods: Ten ambulatory CP patients were recruited. All walked with crouch gait. sEMG data were collected from 14 lower limb muscles during gait analysis. Non-negative matrix factorization method was utilized to extract muscle synergies. Results and significance: A total of five... 

    Designing instrumented walker to measure upper-extremity’s efforts: a case study

    , Article Assistive Technology ; 2018 , Pages 1-9 ; 10400435 (ISSN) Khodadadi, M ; Arab Baniasad, M ; Arazpour, M ; Farahmand, F ; Zohoor, H ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    The high prevalence of shoulder pain in using walkers in patients who have spinal cord injury (SCI). Also, the limited options available to economically measure grip forces in walkers, which drove the need to create one. This article describes a method to obtain upper-extremities’ forces and moments in a person with SCI by designing an appropriate instrumented walker. First, since the commercial multidirectional loadcells are too expensive, custom loadcells are fabricated. Ultimately, a complete gait analysis by means of VICON motion analysis and using inverse dynamic method has been held to measure upper-extremities’ efforts. The results for a person with SCI using a two-wheel walker in low... 

    Role and significance of trunk and upper extremity muscles in walker-assisted paraplegic gait: a case study

    , Article Topics in Spinal Cord Injury Rehabilitation ; Volume 24, Issue 1 , 2018 , Pages 18-27 ; 10820744 (ISSN) Baniasad, M ; Farahmand, F ; Arazpour, M ; Zohoor, H ; Sharif University of Technology
    Thomas Land Publishers Inc  2018
    Abstract
    Background and Purpose: Understanding the role and significance of trunk and upper extremity muscles in paraplegic gait can help in designing more effective assistive devices for these patients and also provides valuable information for improving muscle strengthening programs. Methods: In a patient with a spinal cord injury (SCI) who could walk independently (rating scale of ambulatory capacity, 9) with the aid of bilateral ankle-foot orthosis and a walker, the kinematics, kinetics and electromyographic (EMG) activities of 16 muscles from the trunk and upper and lower extremities were recorded during gait. The onset, cessation, and duration of the EMG signal were associated with the 4 phases... 

    Design and Implementation of a Motion Analysis Algorithm based on Inertia-kinect Sensors for Step Length Estimation

    , M.Sc. Thesis Sharif University of Technology Abbasi, Javad (Author) ; Salarieh, Hassan (Supervisor) ; Alasty, Aria (Co-Supervisor)
    Abstract
    Motion capture is a process that movements of living organisms like human or objects are captured and the results are processed for the desired applications. This applications are in rehabilation, sports, film industry and etc. There are many techniques and instruments for motion capture that optical cameras are the most accurate ones. But this cameras are high cost and limited to labs. Some sensors like IMUs and recently, Kinect cameras have been considered by many researchers because these are low cost and easy to use. But problems like bias, accumulated error and occlusion make them to looking for improvments. Fusion algorithms are one of the best methods that help to use from each... 

    Classification of Cerebral Palsy Patients based on Muscle Synergies

    , M.Sc. Thesis Sharif University of Technology Shojaeefard, Mahya (Author) ; Farahmand, Farzam (Supervisor) ; Narimani, Roya (Supervisor)
    Abstract
    Cerebral palsy (CP) is one of the most common motor disability among children that caused by damage to brain or defective development of brain before, during or just after birth. Due to this damage, children with CP have cognitive and motor problems. As an important activity of daily living, walking enhances independence, social activities and quality of life. Much of therapy for children is aimed to improve their gait. A usual technique to evaluate how a person walk and detect abnormal features in walking pattern is gait analysis. Lots of studies have been done on gait kinematics of CPs and classified them based on their kinematis. The purpose of this thesis is studying muscles activity of... 

    Studying the Kinematics Compensation Mechanism in the Gait of Individuals with Excessive Anti-version using a Subject-Specific Musculoskeletal Model

    , M.Sc. Thesis Sharif University of Technology Khandan, Amin Reza (Author) ; Farahmand, Farzam (Supervisor) ; Narimani, Roya (Supervisor)
    Abstract
    In cases with excessive anteversion even after adolescence, surgeons have to choose osteotomy surgery to modify this abnormality. This surgery and modifying the anatomical problem does not necessarily lead to modify the patients’ gait cycle abnormalities; the authors’ hypothesis is the probable reason may be the persistence of the implement of the patients’ kinematics compensation mechanism even after the surgery. This mechanism is used to almost correct the gait of those with excessive anteversion. First, by using gait analysis text books, a patient’s gait cycle is analyzed; this analysis is consist of 3DGA with EMG and observational gait. Then, by using OpenSim, the patient’s patterns of... 

    Classification of Children with Cerebral Palsy Using Gait Analysis Data

    , M.Sc. Thesis Sharif University of Technology Darbandi, Hamed (Author) ; Farahmand, Farzam (Supervisor) ; Behzadipour, Saeed ($item.subfieldsMap.e)
    Abstract
    Cerebral palsy is a disorder and a condition that occurs before, during or after birth. According to reports, in developing countries, out of every 1,000 births, 3.5 cases develop cerebral palsy. One of the consequences of cerebral palsy is unusual walking due to nerve disorders, including severe spasm of the lower muscles of the trunk. Drugs, therapies, and orthopedic surgeries are used to help patients with cerebral palsy. Improper orthopedic surgeries have severe effects on the patient's function. You can partially solve these problems by using the gateway category. The common patterns of cerebral palsy gait help decide the treatment method. In recent years, the use of gait analysis has... 

    Feet Motion Pattern Recognition Based on Data from Swiss Ranger Camera and other Dynamical Sensors with Offering an Intelligent Data Bank in Motion Correction and Rehabilitation

    , M.Sc. Thesis Sharif University of Technology Sharifi Kolarijani, Arman (Author) ; Sayyaadi, Hassan (Supervisor)
    Abstract
    In this project, we use an off-line motion capture technique for walking pattern recognition and reconstruction, and apply a sensory data acquisition system for extracting knee and ankle joints angular movements. Our approach is a marker-based object tracking technique using only one camera and four markers as data acquisition system, and a neural network method is developed for marker detection. Different walking condition considered including: straight position, inclined position with 〖+5〗^° slope, and 〖-10〗^° slope. Using pattern obtained from above process, the BVH format of the motion is built for 3D reconstruction of the performer’s motion. Since the obtain data describe the motion of...