Loading...
Search for: modified-couple-stress-theories
0.013 seconds
Total 63 records

    Buckling Analysis of Nano-Plates in the Context of Modified Couple Stress Theory Using RKPM

    , M.Sc. Thesis Sharif University of Technology Alemi, Bita (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    In this research, a new Kirchhoff plate model based on the modified couple stress theory has been utilized to derive the corresponding closed-form expression for the buckling load. Moreover, a numerical mesh-less method, Reproducing Kernel Particle Method (RKPM), in combination with Corrected Collocation Method (CCM) has been employed to model the nano-plate and calculate its buckling load in the framework of the modified couple stress theory. To this end, two kinds of nano-plates have been modeled, the square nano-plates with all edges simply supported 1) in the presence of the nano-void and 2) without the nano-void. It should be noted that the analytical and numerical solutions for the... 

    Free Vibration Analysis of Circumferentially Stiffened Micro-Cylinder Made of the Functionally Graded Material

    , M.Sc. Thesis Sharif University of Technology Jabbarian, Siavash (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Firouzbakhsh, Kekhosro (Co-Advisor)
    Abstract
    Micro-Structures, especially cylindrical shells, has been widely used in different high tech industries, that this extreme usage emphasis, analyze of the vibration behavior of these structures. For gain an appropriate characteristics for a known purpose we can stiffen cylindrical shells with some rings that lids to improvement in mechanical properties of them. With advent of new materials, such as Functionally Graded Materials (FGM) and unique properties of these materials investigation of vibration behavior and characteristics of micro cylinders which has been made of FGM can be very important and essential. By using FGM materials many mechanical characteristics of these structures can be... 

    Static and Dynamic Analysis of Nano Beams based on Second Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Kamali, Farhad (Author) ; Eskandari, Morteza (Supervisor)
    Abstract
    In this thesis, static and dynamic analysis of nano beams based on second strain gradient theory is presented. Due to their small sizes, nano electro mechanical devices (NEMS) hold tremendous promise for novel, versatile and very sensitive devices for different applications ranging from actuators, transducers and also mass, force, light and frequency detectors. Therefore accurate modeling and analysis of such devices has an important role in their design and performance improvement. Neglecting the size effect, traditional theory of elasticity can not be suitable to predict mechanical behavior of these systems and so, it should be used non-classical theories which include size dependency... 

    Formulation for Analyzing of the Functionally Graded Kirchhoff Plate Based on the Modified Couple Stress Theory

    , M.Sc. Thesis Sharif University of Technology Taati, Ehsan (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    In this project, a size-dependent formulation is presented for mechanical analyses of inhomogeneous micro-plates based on the modified couple stress theory. The modified couple stress theory as a non-classical continuum theory has the ability to consider the small size effects in the mechanical behavior of the structures.The material properties are supposed arbitrarily to vary through the thickness of the plate. The governing differential equations of motion are derived for functionally graded plates utilizing variational approach. Based on the derived formulation, the static and free-vibration behaviors as well as buckling analysis of a rectangular functionally graded micro-plate are... 

    Analysis of Forced Vibration of Micro-Plates Based On A Modified Couple Stress Theory

    , M.Sc. Thesis Sharif University of Technology Farhadpur, Meraj (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Vibration analysis of micro-structures has been a major topic in recent years. Among them micro-plates play an important role in micro- and nano-electromechanical systems (MEMS and NEMS), e.g. micropumps, micromirrors, and microresonators. Some experimental observations revealed the size-dependent mechanical behavior in micro-scaled structures. Because of the incapability of the classical continuum theory to interpret the experimentally-detected small-scale effects in mechanical behavior of micro-scaled systems, non-classical theories should be used to deal with micron and sub-micron structures. Couple stress theory is one of the non-classical theories with only one length scale parameter. A... 

    Bending Analysis of Rectangular FG Micro Plates using Modified Couple Stress Theory and first Order Shear Deformation Theory

    , M.Sc. Thesis Sharif University of Technology Yekani, Mohammad Amin (Author) ; Fallah Rajabzadeh, Famida (Supervisor) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    Based on the modified couple stress and Mindlin plate theories, a Levy type solution is presented for bending and vibration analysis of rectangular isotropic micro plates with simple supports at opposite edges and different boundary conditions at the other two ones. Modified couple stress theory is taken into account to capture the size effect and the governing equations are derived using Hamilton's principle, and solved by Levy solution and space-state method. The results are verified with the existing ones in the literature. As a benchmark, additional tables for vertical deflections and free vibrations of plate with various boundary conditions are presented  

    Analysis of Thermoelastic Damping in Microbeams and Microplates Based on the Non-Classical Continuum Mechanics and Heat Conduction Theories

    , Ph.D. Dissertation Sharif University of Technology Borjalilou, Vahid (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Due to the features like small dimensions, low manufacturing cost and low power consumption, micro-electromechanical systems (MEMS) are widely utilized in engineering applications. Many experimental investigations have indicated that the mechanical behavior of constructive microelements of these systems isn’t predictable by classical continuum theory. Therefore, to analyze the behavior of microelements, the non-classical continuum theories which can capture size effects should be utilized. On the other hand, various experimental observations have confirmed that thermoelastic damping (TED) is a dominant source of energy dissipation in microelements, in contrast to the non-small parts and... 

    Analysis of Micro Rotating Disk with Angular Acceleration Based on the Non-Classical Continuum Mechanics

    , M.Sc. Thesis Sharif University of Technology Bagheri, Emadoddin (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Incapability of the classical continuum mechanics theory to justify the experimental observations of the mechanical response of the small-scale structures and parts motivated the researchers to pursue the introduction and utilization of the non-classical continuum theories for analysis and design of such structures and parts. In this paper, utilizing the modified couple stress theory and the strain gradient theory as well-known and powerful non-classical continuum theories, the mechanical response, including the displacement and stress fields, for micro-rotating disks with angular acceleration is investigated. The governing differential equations of motion and the corresponding boundary... 

    Mechanical Formulation for Pre-twisted Micro/Nano Beams Based on the Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Javadi Sigaroudi, Mohammad Javad (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    One of the extensively used, yet complex, structures in the industry is pre-twisted Micro/Nano beams. Studying their mechanical behavior helps to have a broader view of them. In this present study, explores and analyzes the behavior of a pre-twisted Micro/Nano beam with a quadrangular/rectangular cross-section using the strain gradient theory and modified couple stress theory. Using the calculus of variations and the Hamiltonian principle the elastodynamics governing partial differential equations of transverse deflection of the pre-twisted Micro/Nano beam with hinged-hinged boundary conditions are derived. Then the mechanical behavior of the pre-twisted Micro/Nano beam in static mode and... 

    Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model

    , Article Journal of Thermal Stresses ; Volume 42, Issue 7 , 2019 , Pages 801-814 ; 01495739 (ISSN) Borjalilou, V ; Asghari, M ; Bagheri, E ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this article, the size-dependent behavior of micro-beams with the thermoelastic damping (TED) phenomenon is studied. The coupled thermoelasticity equations are derived on the basis of the modified couple stress theory (MCST) and dual-phase-lag (DPL) heat conduction model. By solving these coupled equations simultaneously, a closed-form expression for the TED parameter in micro-beams is presented which considers the small-scale effects incorporation. Then, the effect of various parameters on TED in micro-beams, such as micro-beam height, the type of material, boundary conditions, and aspect ratio is investigated. The results show that the influence of utilizing non-classical continuum and... 

    Size-dependent analysis of thermoelastic damping in electrically actuated microbeams

    , Article Mechanics of Advanced Materials and Structures ; 2019 ; 15376494 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    This paper presents an analytical expression for the thermoelastic damping (TED) in electrically actuated microbeams based on the nonclassical continuum theory of the modified couple stress (MSC) and the nonclassical heat conduction model of the dual-phase-lag (DPL). This expression for TED captures small-scale effects. The coupled equations of motion and heat conduction are first derived. Then, the set of coupled governing equations are analytically dealt, and the real and imaginary parts of frequency are extracted in the framework of the complex frequency approach. Next, a closed-form relation for describing TED in electrically actuated microbeams is obtained which captures the small-scale... 

    Elasticity formulation for motion equations of couple stress based micro-rotating disks with varying speeds

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Bagheri, E ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    The elasticity formulation for equations of motion of micro-rotating disks in the presence of angular acceleration as well as the corresponding boundary conditions are developed based on the non-classical continuum theory of couple stress. The system of the boundary value problem is derived on the basis of the variational method. Analytical elasticity solutions to the system of equations are then provided. Based on the elasticity solution, the mechanical responses, including the displacement and stress fields, for varying-speed micro-rotating disks are studied. In a numerical case study, the effect of the couple stresses on the distribution of stress and displacement components are... 

    Size-dependent analysis of thermoelastic damping in electrically actuated microbeams

    , Article Mechanics of Advanced Materials and Structures ; 2019 ; 15376494 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    This paper presents an analytical expression for the thermoelastic damping (TED) in electrically actuated microbeams based on the nonclassical continuum theory of the modified couple stress (MSC) and the nonclassical heat conduction model of the dual-phase-lag (DPL). This expression for TED captures small-scale effects. The coupled equations of motion and heat conduction are first derived. Then, the set of coupled governing equations are analytically dealt, and the real and imaginary parts of frequency are extracted in the framework of the complex frequency approach. Next, a closed-form relation for describing TED in electrically actuated microbeams is obtained which captures the small-scale... 

    Elasticity formulation for motion equations of couple stress based micro-rotating disks with varying speeds

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Bagheri, E ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    The elasticity formulation for equations of motion of micro-rotating disks in the presence of angular acceleration as well as the corresponding boundary conditions are developed based on the non-classical continuum theory of couple stress. The system of the boundary value problem is derived on the basis of the variational method. Analytical elasticity solutions to the system of equations are then provided. Based on the elasticity solution, the mechanical responses, including the displacement and stress fields, for varying-speed micro-rotating disks are studied. In a numerical case study, the effect of the couple stresses on the distribution of stress and displacement components are... 

    Investigation of the small-scale effects on the three-dimensional flexural vibration characteristics of a basic model for micro-engines

    , Article Acta Mechanica ; Volume 226, Issue 9 , September , 2015 , Pages 3085-3096 ; 00015970 (ISSN) Hashemi, M ; Asghari, M ; Sharif University of Technology
    Springer-Verlag Wien  2015
    Abstract
    The coupled three-dimensional flexural vibrations of a micro-rotating shaft–disk system, as a basic model for micro-engines, are investigated in this paper by considering small-scale effects utilizing the modified couple stress theory. Governing equations of motion are derived by the use of Hamilton’s principle. Then, implementing the Galerkin approach, an infinite set of ordinary differential equations is obtained for the system. With truncated two-term equations, expressions for the first two natural frequencies are written, and for the two corresponding modes, the maximum rotational speed up to which the system will be stable is analytically determined. Parametric studies on the results... 

    Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model

    , Article Acta Mechanica ; Volume 229, Issue 9 , 2018 , Pages 3869-3884 ; 00015970 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    Thermoelastic damping (TED) is one of the main energy dissipation mechanisms in structures with small scales. On the other hand, the classical continuum theory is not capable of describing the mechanical behavior of small-scale structures. In this paper, small-scale effects on the thermoelastic damping in microplates are studied. To this end, the coupled governing equations of motion and heat conduction are obtained based on the non-classical continuum theory of the modified couple stress and the dual-phase-lag heat conduction model. By solving these coupled equations, an explicit expression including small-scale effects for calculating TED in microplates is derived. The results are compared... 

    A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method

    , Article Engineering with Computers ; 2021 ; 01770667 (ISSN) Liu, H ; Zhao, Y ; Pishbin, M ; Habibi, M ; Bashir, M. O ; Issakhov, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this study, frequency simulation and critical angular velocity of a size-dependent laminated rotary microsystem using modified couple stress theory (MCST) as the higher-order elasticity model is undertaken. The centrifugal and Coriolis impacts due to the spinning are taken into account. The size-dependent thick annular microsystem's computational formulation, non-classical governing equations, and corresponding boundary conditions are obtained by using the higher-order stress tensors and symmetric rotation gradient to the strain energy. By using a single material length scale factor, the most recent non-classical approach captures the size-dependency in the annular laminated microsystem.... 

    Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties

    , Article Engineering with Computers ; Volume 37, Issue 4 , 2021 , Pages 3629-3648 ; 01770667 (ISSN) Shariati, A ; Habibi, M ; Tounsi, A ; Safarpour, H ; Safa, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The stability analysis of cantilevered curved microtubules in axons regarding various size elements and using the generalized differential quadrature method for solving equations is reported. The impacts of covering MAP Tau proteins along with cytoplasm are taken into account as the elastic medium. Curved cylindrical nanoshell considering thick wall is used to model the microtubules. The factor of length scale (l/R = 0.2) used in modified couple stress theory would result in more accuracy when it comes to comparison with experiments, while alternative theories presented in this paper provide less precise outcomes. Due to the reported precise results, at the lower value of the time-dependent... 

    A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method

    , Article Engineering with Computers ; Volume 38 , 2022 , Pages 4181-4196 ; 01770667 (ISSN) Liu, H ; Zhao, Y ; Pishbin, M ; Habibi, M ; Bashir, M. O ; Issakhov, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this study, frequency simulation and critical angular velocity of a size-dependent laminated rotary microsystem using modified couple stress theory (MCST) as the higher-order elasticity model is undertaken. The centrifugal and Coriolis impacts due to the spinning are taken into account. The size-dependent thick annular microsystem's computational formulation, non-classical governing equations, and corresponding boundary conditions are obtained by using the higher-order stress tensors and symmetric rotation gradient to the strain energy. By using a single material length scale factor, the most recent non-classical approach captures the size-dependency in the annular laminated microsystem.... 

    The couple stress-based nonlinear coupled three-dimensional vibration analysis of microspinning Rayleigh beams

    , Article Nonlinear Dynamics ; Volume 87, Issue 2 , 2017 , Pages 1315-1334 ; 0924090X (ISSN) Asghari, M ; Hashemi, M ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    The nonlinear coupled three-dimensional vibrations of microspinning Rayleigh beams are analytically studied utilizing the modified couple stress theory to take into account the small-scale effects. The considered nonlinearity is of geometrical type due to the mid-plane stretching. The rotary inertia and gyroscopic effects are both included in the formulation. Governing equations of motion are derived with the aid of the Hamilton Principle and then transformed into complex form. Then, the Galerkin and multiple scales methods are utilized to solve the nonlinear partial differential equation. Approximate analytical expressions for nonlinear natural frequencies of the spinning beams in forward...