Loading...
Search for: modified-couple-stress-theories
0.009 seconds
Total 63 records

    Buckling Analysis of Nano-Plates in the Context of Modified Couple Stress Theory Using RKPM

    , M.Sc. Thesis Sharif University of Technology Alemi, Bita (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    In this research, a new Kirchhoff plate model based on the modified couple stress theory has been utilized to derive the corresponding closed-form expression for the buckling load. Moreover, a numerical mesh-less method, Reproducing Kernel Particle Method (RKPM), in combination with Corrected Collocation Method (CCM) has been employed to model the nano-plate and calculate its buckling load in the framework of the modified couple stress theory. To this end, two kinds of nano-plates have been modeled, the square nano-plates with all edges simply supported 1) in the presence of the nano-void and 2) without the nano-void. It should be noted that the analytical and numerical solutions for the... 

    Analysis of Micro Rotating Disk with Angular Acceleration Based on the Non-Classical Continuum Mechanics

    , M.Sc. Thesis Sharif University of Technology Bagheri, Emadoddin (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Incapability of the classical continuum mechanics theory to justify the experimental observations of the mechanical response of the small-scale structures and parts motivated the researchers to pursue the introduction and utilization of the non-classical continuum theories for analysis and design of such structures and parts. In this paper, utilizing the modified couple stress theory and the strain gradient theory as well-known and powerful non-classical continuum theories, the mechanical response, including the displacement and stress fields, for micro-rotating disks with angular acceleration is investigated. The governing differential equations of motion and the corresponding boundary... 

    Analysis of Thermoelastic Damping in Microbeams and Microplates Based on the Non-Classical Continuum Mechanics and Heat Conduction Theories

    , Ph.D. Dissertation Sharif University of Technology Borjalilou, Vahid (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Due to the features like small dimensions, low manufacturing cost and low power consumption, micro-electromechanical systems (MEMS) are widely utilized in engineering applications. Many experimental investigations have indicated that the mechanical behavior of constructive microelements of these systems isn’t predictable by classical continuum theory. Therefore, to analyze the behavior of microelements, the non-classical continuum theories which can capture size effects should be utilized. On the other hand, various experimental observations have confirmed that thermoelastic damping (TED) is a dominant source of energy dissipation in microelements, in contrast to the non-small parts and... 

    Bending Analysis of Rectangular FG Micro Plates using Modified Couple Stress Theory and first Order Shear Deformation Theory

    , M.Sc. Thesis Sharif University of Technology Yekani, Mohammad Amin (Author) ; Fallah Rajabzadeh, Famida (Supervisor) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    Based on the modified couple stress and Mindlin plate theories, a Levy type solution is presented for bending and vibration analysis of rectangular isotropic micro plates with simple supports at opposite edges and different boundary conditions at the other two ones. Modified couple stress theory is taken into account to capture the size effect and the governing equations are derived using Hamilton's principle, and solved by Levy solution and space-state method. The results are verified with the existing ones in the literature. As a benchmark, additional tables for vertical deflections and free vibrations of plate with various boundary conditions are presented  

    Analysis of Forced Vibration of Micro-Plates Based On A Modified Couple Stress Theory

    , M.Sc. Thesis Sharif University of Technology Farhadpur, Meraj (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Vibration analysis of micro-structures has been a major topic in recent years. Among them micro-plates play an important role in micro- and nano-electromechanical systems (MEMS and NEMS), e.g. micropumps, micromirrors, and microresonators. Some experimental observations revealed the size-dependent mechanical behavior in micro-scaled structures. Because of the incapability of the classical continuum theory to interpret the experimentally-detected small-scale effects in mechanical behavior of micro-scaled systems, non-classical theories should be used to deal with micron and sub-micron structures. Couple stress theory is one of the non-classical theories with only one length scale parameter. A... 

    Free Vibration Analysis of Circumferentially Stiffened Micro-Cylinder Made of the Functionally Graded Material

    , M.Sc. Thesis Sharif University of Technology Jabbarian, Siavash (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Firouzbakhsh, Kekhosro (Co-Advisor)
    Abstract
    Micro-Structures, especially cylindrical shells, has been widely used in different high tech industries, that this extreme usage emphasis, analyze of the vibration behavior of these structures. For gain an appropriate characteristics for a known purpose we can stiffen cylindrical shells with some rings that lids to improvement in mechanical properties of them. With advent of new materials, such as Functionally Graded Materials (FGM) and unique properties of these materials investigation of vibration behavior and characteristics of micro cylinders which has been made of FGM can be very important and essential. By using FGM materials many mechanical characteristics of these structures can be... 

    Formulation for Analyzing of the Functionally Graded Kirchhoff Plate Based on the Modified Couple Stress Theory

    , M.Sc. Thesis Sharif University of Technology Taati, Ehsan (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    In this project, a size-dependent formulation is presented for mechanical analyses of inhomogeneous micro-plates based on the modified couple stress theory. The modified couple stress theory as a non-classical continuum theory has the ability to consider the small size effects in the mechanical behavior of the structures.The material properties are supposed arbitrarily to vary through the thickness of the plate. The governing differential equations of motion are derived for functionally graded plates utilizing variational approach. Based on the derived formulation, the static and free-vibration behaviors as well as buckling analysis of a rectangular functionally graded micro-plate are... 

    Mechanical Formulation for Pre-twisted Micro/Nano Beams Based on the Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Javadi Sigaroudi, Mohammad Javad (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    One of the extensively used, yet complex, structures in the industry is pre-twisted Micro/Nano beams. Studying their mechanical behavior helps to have a broader view of them. In this present study, explores and analyzes the behavior of a pre-twisted Micro/Nano beam with a quadrangular/rectangular cross-section using the strain gradient theory and modified couple stress theory. Using the calculus of variations and the Hamiltonian principle the elastodynamics governing partial differential equations of transverse deflection of the pre-twisted Micro/Nano beam with hinged-hinged boundary conditions are derived. Then the mechanical behavior of the pre-twisted Micro/Nano beam in static mode and... 

    Static and Dynamic Analysis of Nano Beams based on Second Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Kamali, Farhad (Author) ; Eskandari, Morteza (Supervisor)
    Abstract
    In this thesis, static and dynamic analysis of nano beams based on second strain gradient theory is presented. Due to their small sizes, nano electro mechanical devices (NEMS) hold tremendous promise for novel, versatile and very sensitive devices for different applications ranging from actuators, transducers and also mass, force, light and frequency detectors. Therefore accurate modeling and analysis of such devices has an important role in their design and performance improvement. Neglecting the size effect, traditional theory of elasticity can not be suitable to predict mechanical behavior of these systems and so, it should be used non-classical theories which include size dependency... 

    Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 322 , 2017 , Pages 615-632 ; 00457825 (ISSN) Shafiei, N ; Mirjavadi, S. S ; MohaselAfshari, B ; Rabby, S ; Kazemi, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    This study presents analysis on the vibration behavior of the two-dimensional functionally graded (2D-FG) nano and microbeams which are made of two kinds of porous materials for the first time, based on Timoshenko beam theory. The material of the nano and microbeams is modeled as 2D-FGMs according to the power law. The Eringen's nonlocal elasticity and the modified couple stress theories are used, respectively in case of nano and microbeams. The boundary conditions are considered as clamped (CC), simply supported (SS), clamped–simply supported (CS), and cantilever (CF). The governing equations are solved using the generalized differential quadrature method (GDQM). The effects of FG power... 

    Vibration control and manufacturing of intelligibly designed axially functionally graded cantilevered macro/micro-tubes

    , Article 13th IFAC Workshop on Intelligent Manufacturing Systems, IMS 2019, 12 August 2019 through 14 August 2019 ; Volume 52, Issue 10 , 2019 , Pages 382-387 ; 24058963 (ISSN) Mirtalebi, H ; Ebrahimi Mamaghani, A ; Ahmadian, M. T ; Barari A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the last decade, extensive attention is devoted to intelligibly designed materials of macro/micro-structures containing the fluid flow. In this study, intelligent control and vibrational stability of cantilevered fluid conveying macro/micro-tubes utilizing axially functionally graded (AFG) materials are considered. The governing equation of motion of the system is derived based on modified couple stress theory and then is discretized using Galerkin method. A detailed investigation is carried out to elaborate the influence of various parameters such as material properties, axial compressive load, and Pasternak foundation on the dynamical behavior of the system, all of which are influential... 

    Vibration control and manufacturing of intelligibly designed axially functionally graded cantilevered macro/micro-tubes

    , Article 13th IFAC Workshop on Intelligent Manufacturing Systems, IMS 2019, 12 August 2019 through 14 August 2019 ; Volume 52, Issue 10 , 2019 , Pages 382-387 ; 24058963 (ISSN) Mirtalebi, H ; Ebrahimi Mamaghani, A ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the last decade, extensive attention is devoted to intelligibly designed materials of macro/micro-structures containing the fluid flow. In this study, intelligent control and vibrational stability of cantilevered fluid conveying macro/micro-tubes utilizing axially functionally graded (AFG) materials are considered. The governing equation of motion of the system is derived based on modified couple stress theory and then is discretized using Galerkin method. A detailed investigation is carried out to elaborate the influence of various parameters such as material properties, axial compressive load, and Pasternak foundation on the dynamical behavior of the system, all of which are influential... 

    Vibration analysis of electrostatically actuated nonlinear microbridges based on the modified couple stress theory

    , Article Applied Mathematical Modelling ; Volume 39, Issue 21 , November , 2015 , Pages 6694-6704 ; 0307904X (ISSN) Rahaeifard, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    In this paper natural frequency of electrostatically actuated microbridges is investigated based on the modified couple stress theory. Nonlinear formulation of Euler-Bernoulli microbeam is derived using Hamilton's principle. By considering the von-Karman strain, the nonlinearities caused by the mid-plane stretching are included in the formulation. To confirm the model, results of static deflection and natural frequency of microbeams are calculated using modified couple stress theory and compared to those evaluated based on the classical theory and experimental observations. At first, from experimental results of static deflection of a microcantilever, estimation for length scale parameter of... 

    Torsional vibration induced by gyroscopic effect in the modified couple stress based micro-rotors

    , Article European Journal of Mechanics, A/Solids ; Volume 81 , May–June , 2020 Jahangiri, M ; Asghari, M ; Bagheri, E ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, the small-scale effects in the torsional vibration of the micro-rotors with eccentric micro-disks are investigated based on the modified couple stress theory. The torsional deformation of the micro-shaft described by function φ(x,t) is considered to be independent of the flexural deformation described by functions v(x,t) and w(x,t). Using Hamilton's principle, the system of coupled nonlinear governing partial differential equations of motion and the associated boundary conditions are derived. The system of equations includes one corresponding to the torsional deformation and two others corresponding to the flexural deformation. By employing the Galerkin method, the system... 

    Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam

    , Article Journal of Thermal Stresses ; Volume 40, Issue 10 , 2017 , Pages 1201-1214 ; 01495739 (ISSN) Mirjavadi, S. S ; Matin, A ; Shafiei, N ; Rabby, S ; Mohasel Afshari, B ; Sharif University of Technology
    Abstract
    This article presents a study on the thermal buckling behavior of two-dimensional functionally graded microbeams made of porous materials. The material composition varies along thickness and length of the microbeam based on the power law distribution. The microbeam is modeled within the framework of Euler–Bernoulli beam theory. The microbeam is considered having variable material composition along thickness. The equations are derived using the modified couple stress theory and the solving process is based on the generalized differential quadrature method. The validity of the results is shown through comparison of the results with the results of other published research. © 2017 Taylor &... 

    Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell

    , Article Microsystem Technologies ; Volume 26, Issue 2 , 2020 , Pages 461-473 Ebrahimi, F ; Hashemabadi, D ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer  2020
    Abstract
    In this research, thermal buckling and forced vibration characteristics of the imperfect composite cylindrical nanoshell reinforced with graphene nanoplatelets (GNP) in thermal environments are presented. Halpin–Tsai nanomechanical model is used to determine the material properties of each layer. The size-dependent effects of GNPRC nanoshell is analyzed using modified couple stress theory. For the first time, in the present study, porous functionally graded multilayer couple stress (FMCS) parameter which changes along the thickness is considered. The novelty of the current study is to consider the effects of porosity, GNPRC, FMCS and thermal environment on the resonance frequencies, thermal... 

    The couple stress-based nonlinear coupled three-dimensional vibration analysis of microspinning Rayleigh beams

    , Article Nonlinear Dynamics ; Volume 87, Issue 2 , 2017 , Pages 1315-1334 ; 0924090X (ISSN) Asghari, M ; Hashemi, M ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    The nonlinear coupled three-dimensional vibrations of microspinning Rayleigh beams are analytically studied utilizing the modified couple stress theory to take into account the small-scale effects. The considered nonlinearity is of geometrical type due to the mid-plane stretching. The rotary inertia and gyroscopic effects are both included in the formulation. Governing equations of motion are derived with the aid of the Hamilton Principle and then transformed into complex form. Then, the Galerkin and multiple scales methods are utilized to solve the nonlinear partial differential equation. Approximate analytical expressions for nonlinear natural frequencies of the spinning beams in forward... 

    Strain gradient formulation of functionally graded nonlinear beams

    , Article International Journal of Engineering Science ; Volume 65 , 2013 , Pages 49-63 ; 00207225 (ISSN) Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    2013
    Abstract
    In this paper size-dependent static and dynamic behavior of nonlinear Euler-Bernoulli beams made of functionally graded materials (FGMs) is investigated on the basis of the strain gradient theory. The volume fraction of the material constituents is assumed to be varying through the thickness of the beam based on a power law. As a consequence, the material properties of the microbeam (including length scales) are varying in the direction of the beam thickness. To develop the model, the usual simplifying assumption which considers the length scale parameter to be constant through the thickness is avoided and equivalent length scale parameters are introduced for functionally graded microbeams... 

    Strain gradient beam element

    , Article Finite Elements in Analysis and Design ; Volume 68 , June , 2013 , Pages 63-75 ; 0168874X (ISSN) Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    The classical continuum theory is neither able to accurately model the mechanical behavior of micro/nano-scale structures nor capable of justifying the size-dependent behavior observed in these structures; so the non-classical continuum theories such as the strain gradient theory have been emerged and developed. In order to enable the finite element method (FEM) to more accurately deal with the problems in micro/nano-scale structures, a size-dependent Euler-Bernoulli beam element is developed based on the strain gradient theory. Compared to the classical Euler-Bernoulli beam element, the nodal displacement vector of the new Euler-Bernoulli beam element has an additional component, i.e. the... 

    Static pull-in analysis of microcantilevers based on the modified couple stress theory

    , Article Sensors and Actuators, A: Physical ; Volume 171, Issue 2 , 2011 , Pages 370-374 ; 09244247 (ISSN) Rahaeifard, M ; Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    This paper investigates the deflection and static pull-in voltage of microcantilevers based on the modified couple stress theory, a non-classic continuum theory capable to predict the size effects for structures in micron and sub-micron scales. It is shown that the couple stress theory can remove the gap between the experimental observations and the classical theory based simulations for the static pull-in voltage