Loading...
Search for: nucleic-acid
0.006 seconds
Total 33 records

    Histidine-enhanced gene delivery systems: The state of the art

    , Article Journal of Gene Medicine ; Volume 24, Issue 5 , 2022 ; 1099498X (ISSN) Hooshmand, S. E ; Jahanpeimay Sabet, M ; Hasanzadeh, A ; Kamrani Mousavi, S. M ; Haeri Moghaddam, N ; Hooshmand, S. A ; Rabiee, N ; Liu, Y ; Hamblin, M. R ; Karimi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Gene therapy has emerged as a promising tool for treating different intractable diseases, particularly cancer or even viral diseases such as COVID-19 (coronavirus disease 2019). In this context, various non-viral gene carriers are being explored to transfer DNA or RNA sequences into target cells. Here, we review the applications of the naturally occurring amino acid histidine in the delivery of nucleic acids into cells. The biocompatibility of histidine-enhanced gene delivery systems has encouraged their wider use in gene therapy. Histidine-based gene carriers can involve the modification of peptides, dendrimers, lipids or nanocomposites. Several linear polymers, such as polyethylenimine,... 

    Laboratory detection methods for the human coronaviruses

    , Article European Journal of Clinical Microbiology and Infectious Diseases ; Volume 40, Issue 2 , 2021 , Pages 225-246 ; 09349723 (ISSN) Shabani, E ; Dowlatshahi, S ; Abdekhodaie, M. J ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Coronaviruses are a group of envelop viruses which lead to diseases in birds and mammals as well as human. Seven coronaviruses have been discovered in humans that can cause mild to lethal respiratory tract infections. HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 are the low-risk members of this family and the reason for some common colds. Besides, SARS-CoV, MERS-CoV, and newly identified SARS-CoV-2, which is also known as 2019-nCoV, are the more dangerous viruses. Due to the rapid spread of this novel coronavirus and its related disease, COVID-19, a reliable, simple, fast, and low-cost detection method is necessary for patient diagnosis and tracking worldwide. Human coronaviruses detection... 

    Green chemistry and coronavirus

    , Article Sustainable Chemistry and Pharmacy ; Volume 21 , 2021 ; 23525541 (ISSN) Ahmadi, S ; Rabiee, N ; Fatahi, Y ; Hooshmand, S. E ; Bagherzadeh, M ; Rabiee, M ; Jajarmi, V ; Dinarvand, R ; Habibzadeh, S ; Saeb, M. R ; Varma, R. S ; Shokouhimehr, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be... 

    Green chemistry and coronavirus

    , Article Sustainable Chemistry and Pharmacy ; Volume 21 , 2021 ; 23525541 (ISSN) Ahmadi, S ; Rabiee, N ; Fatahi, Y ; Hooshmand, S. E ; Bagherzadeh, M ; Rabiee, M ; Jajarmi, V ; Dinarvand, R ; Habibzadeh, S ; Saeb, M. R ; Varma, R.S ; Shokouhimehr, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be... 

    CANCERSIGN: a user-friendly and robust tool for identification and classification of mutational signatures and patterns in cancer genomes

    , Article Scientific Reports ; Volume 10, Issue 1 , 2020 Bayati, M ; Rabiee, H. R ; Mehrbod, M ; Vafaee, F ; Ebrahimi, D ; Forrest, A. R. R ; Alinejad Rokny, H ; Sharif University of Technology
    Nature Research  2020
    Abstract
    Analysis of cancer mutational signatures have been instrumental in identification of responsible endogenous and exogenous molecular processes in cancer. The quantitative approach used to deconvolute mutational signatures is becoming an integral part of cancer research. Therefore, development of a stand-alone tool with a user-friendly interface for analysis of cancer mutational signatures is necessary. In this manuscript we introduce CANCERSIGN, which enables users to identify 3-mer and 5-mer mutational signatures within whole genome, whole exome or pooled samples. Additionally, this tool enables users to perform clustering on tumor samples based on the proportion of mutational signatures in... 

    Point-of-use rapid detection of sars-cov-2: Nanotechnology-enabled solutions for the covid-19 pandemic

    , Article International Journal of Molecular Sciences ; Volume 21, Issue 14 , 2020 , Pages 1-23 Rabiee, N ; Bagherzadeh, M ; Ghasemi, A ; Zare, H ; Ahmadi, S ; Fatahi, Y ; Dinarvand, R ; Rabiee, M ; Ramakrishna, S ; Shokouhimehr, M ; Varma, R. S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic that has been spreading around the world since December 2019. More than 10 million affected cases and more than half a million deaths have been reported so far, while no vaccine is yet available as a treatment. Considering the global healthcare urgency, several techniques, including whole genome sequencing and computed tomography imaging have been employed for diagnosing infected people. Considerable efforts are also directed at detecting and preventing different modes of community transmission. Among them is the rapid detection of virus presence on different surfaces with which people may come in... 

    Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review

    , Article Analytica Chimica Acta ; Volume 1079 , 2019 , Pages 30-58 ; 00032670 (ISSN) Bigdeli, A ; Ghasemi, F ; Abbasi Moayed, S ; Shahrajabian, M ; Fahimi Kashani, N ; Jafarinejad, S ; Farahmand Nejad, M. A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Signal generation techniques for visual detection of analytes have received a great deal of attention in various sensing fields. These approaches are considered to be advantageous when instrumentation cannot be employed, such as for on-site assays, point-of-care tests, and he althcare diagnostics in resource-constrained areas. Amongst various visual detection approaches explored for non-invasive quantitative measurements, ratiometric fluorescence sensing has received particular attention as a potential method to overcome the limitations of intensity-based probes. This technique relies on changes in the intensity of two or more emission bands (induced by an analyte), resulting in an effective... 

    Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection

    , Article Sensors and Actuators, B: Chemical ; Volume 283 , 2019 , Pages 831-841 ; 09254005 (ISSN) Naghdloo, A ; Ghazimirsaeed, E ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Nucleic acid amplification via polymerase chain reaction (PCR) is one of the essential and powerful methods used in a myriad of bio-assays in clinical laboratories. Application of microfluidic devices in biologically-related processes like PCR can result in the usage of less volume of reactant samples and reduce the processing time. By implementing PCR systems on centrifugal microfluidic platforms, automation and portability can be easily achieved. Although several methods have been developed, most of them are still dealing with challenges of the required high processing time. This study presents the numerical simulation of a fully automated PCR system with the goal of enhancing the mixing... 

    You are what you eat: Sequence analysis reveals how plant microRNAs may regulate the human genome

    , Article Computers in Biology and Medicine ; Volume 106 , 2019 , Pages 106-113 ; 00104825 (ISSN) Kashani, B ; Hasani Bidgoli, M ; Motahari, S. A ; Sedaghat, N ; Modarressi, M. H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Background: Nutrigenomic has revolutionized our understanding of nutrition. As plants make up a noticeable part of our diet, in the present study we chose microRNAs of edible plants and investigated if they can perfectly match human genes, indicating potential regulatory functionalities. Methods: miRNAs were obtained using the PNRD database. Edible plants were separated and microRNAs in common in at least four of them entered our analysis. Using vmatchPattern, these 64 miRNAs went through four steps of refinement to improve target prediction: Alignment with the whole genome (2581 results), filtered for those in gene regions (1371 results), filtered for exon regions (66 results) and finally... 

    The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology

    , Article Biosensors and Bioelectronics ; Volume 105 , 15 May , 2018 , Pages 58-64 ; 09565663 (ISSN) Shariati, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50 nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10 µM. The detection limit of... 

    Mining DNA sequences based on spatially coded technique using spatial light modulator

    , Article IWCIT 2016 - Iran Workshop on Communication and Information Theory, 3 May 2016 through 4 May 2016 ; 2016 ; 9781509019229 (ISBN) Fazelian, M ; Abdollahramezani, S ; Bahrani, S ; Chizari, A ; Jamali, M. V ; Khorramshahi, P ; Tashakori, A ; Shahsavari, S ; Salehi, J. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper, we present an optical computing method for string data alignment applicable to genome information analysis. By applying moire technique to spatial encoding patterns of deoxyribonucleic acid (DNA) sequences, association information of the genome and the expressed phenotypes could more effectively be extracted. Such moire fringes reveal occurrence of matching, deletion and insertion between DNA sequences providing useful visualized information for prediction of gene function and classification of species. Furthermore, by applying a cylindrical lens, a new technique is proposed to map two-dimensional (2D) association information to a one-dimensional (1D) column of pixels, where... 

    Extreme bendability of DNA double helix due to bending asymmetry

    , Article Journal of Chemical Physics ; Volume 143, Issue 10 , 2015 ; 00219606 (ISSN) Salari, H ; Eslami Mossallam, B ; Naderi, S ; Ejtehadi, M. R ; Sharif University of Technology
    American Institute of Physics Inc  2015
    Abstract
    Experimental data of the DNA cyclization (J-factor) at short length scales exceed the theoretical expectation based on the wormlike chain (WLC) model by several orders of magnitude. Here, we propose that asymmetric bending rigidity of the double helix in the groove direction can be responsible for extreme bendability of DNA at short length scales and it also facilitates DNA loop formation at these lengths. To account for the bending asymmetry, we consider the asymmetric elastic rod (AER) model which has been introduced and parametrized in an earlier study [B. Eslami-Mossallam and M. R. Ejtehadi, Phys. Rev. E 80, 011919 (2009)]. Exploiting a coarse grained representation of the DNA molecule... 

    Colourimetric-based method for the diagnosis of spinal muscular atrophy using gold nanoprobes

    , Article IET Nanobiotechnology ; Volume 9, Issue 1 , Feb , 2015 , Pages 5-10 ; 17518741 (ISSN) Ahmadpour Yazdi, H ; Hormozi Nezhad, M. R ; Abadi, A. R ; Sanati, M. H ; Kazemi, B ; Sharif University of Technology
    Institution of Engineering and Technology  2015
    Abstract
    Although numerous molecular methods for spinal muscular atrophy (SMA) detection have been exploited, most of hem are laborious, time consuming and costly. Recently, gold nanoparticles (AuNPs) have attracted attention in the field of colourimetric bioanalysis, because AuNP aggregation can be tracked with the naked eye as well as ultraviolet-visible (UV-vis) peak analysis. Here, based on a non-cross linking platform, a colourimetric-based method was used to evaluate the capability of thiolated oligo-AuNPs (Au nanoprobes) to distinguish between normal individuals, carriers and those with SMA. In this platform, removal of the repulsive force of the Au nanoprobes using high salt concentration... 

    Comparison of gas phase intrinsic properties of cytosine and thymine nucleobases with their O-alkyl adducts: Different hydrogen bonding preferences for thymine versus O-alkyl thymine

    , Article Journal of Molecular Modeling ; Volume 19, Issue 8 , 2013 , Pages 2993-3005 ; 16102940 (ISSN) Aliakbar Tehrani, Z ; Fattahi, A ; Sharif University of Technology
    2013
    Abstract
    In recent years, there has been increasing interest in damaged DNA and RNA nucleobases. These damaged nucleobases can cause DNA mutation, resulting in various diseases such as cancer. Alkylating agents are mutagenic and carcinogenic in a variety of prokaryotic and eukaryotic organisms. The present study employs density functional theory (DFT/B3LYP) with the 6-311++G(d,p) basis set to investigate the effect of chemical damage in O-alkyl pyrimidines such as O4-methylthymine, O2-methylcytosine and O 2-methylthymine. We compared the intrinsic properties, such as proton affinities, gas phase acidities, equilibrium tautomerization and nucleobase pair's hydrogen bonding properties, of these... 

    Rigid-body molecular dynamics of DNA inside a nucleosome

    , Article European Physical Journal E ; Volume 36, Issue 3 , March , 2013 ; 12928941 (ISSN) Fathizadeh, A ; Berdy Besya, A ; Ejtehadi, M. R ; Schiessel, H ; Sharif University of Technology
    2013
    Abstract
    The majority of eukaryotic DNA, about three quarter, is wrapped around histone proteins forming so-called nucleosomes. To study nucleosomal DNA we introduce a coarse-grained molecular dynamics model based on sequence-dependent harmonic rigid base pair step parameters of DNA and nucleosomal binding sites. Mixed parametrization based on all-atom molecular dynamics and crystallographic data of protein-DNA structures is used for the base pair step parameters. The binding site parameters are adjusted by experimental B-factor values of the nucleosome crystal structure. The model is then used to determine the energy cost for placing a twist defect into the nucleosomal DNA which allows us to use... 

    Multiway investigation of interaction between fluorescence labeled DNA strands and unmodified gold nanoparticles

    , Article Analytical Chemistry ; Volume 84, Issue 15 , July , 2012 , Pages 6603-6610 ; 00032700 (ISSN) Akhlaghi, Y ; Kompany Zareh, M ; Hormozi Nezhad, M. R ; Sharif University of Technology
    ACS  2012
    Abstract
    The single stranded DNA can be adsorbed on the negatively charged surface of gold nanoparticles (AuNPs), but the rigid structure of double stranded DNA prevents it from adsorption. Signal of a tagged single stranded DNA will be quenched by the plasmon effect of the AuNP surface after its adsorption. This phenomenon has been used to study the DNA hybridization and interactions of two complementary 21mer oligonucleotides each tagged with a different fluorescent dye in the presence of 13 nm gold nanoparticles. The DNA strands used in this study belong to the genome of HIV. The obtained rank deficient three-way fluorescence data sets were resolved by both PARAFAC and restricted Tucker3 models.... 

    Denaturation of Drew-Dickerson DNA in a high salt concentration medium: Molecular dynamics simulations

    , Article Journal of Computational Chemistry ; Volume 32, Issue 16 , September , 2011 , Pages 3354-3361 ; 01928651 (ISSN) Izanloo, C ; Parsafar, G. A ; Abroshan, H ; Akbarzadeh, H ; Sharif University of Technology
    2011
    Abstract
    We have performed molecular dynamics simulation on B-DNA duplex (CGCGAATTGCGC) at different temperatures. The DNA was immerged in a salt-water medium with 1 M NaCl concentration to investigate salt effect on the denaturation process. At each temperature, configurational entropy is estimated using the covariance matrix of atom-positional fluctuations, from which the melting temperature (T m) was found to be 349 K. The calculated configuration entropy for different bases shows that the melting process involves more peeling (including fraying from the ends) conformations, and therefore the untwisting of the duplex and peeling states form the transition state of the denaturation process. There... 

    Contribution of nonlocal interactions to DNA elasticity

    , Article Journal of Chemical Physics ; Volume 134, Issue 12 , 2011 ; 00219606 (ISSN) Eslami Mossallam, B ; Ejtehadi, M. R ; Sharif University of Technology
    2011
    Abstract
    A nonlocal harmonic elastic rod model is proposed to describe the elastic behavior of short DNA molecules. We show that the nonlocal interactions contribute to effective bending energy of the molecule and affect its apparent persistence length. It is also shown that the anomalous behavior which has been observed in all-atom molecular dynamic simulations [A. K. Mazur, Biophys. J. 134, 4507 (2006)] can be a consequence of both nonlocal interactions between DNA base pairs and the intrinsic curvature of DNA  

    Single-centered hydrogen-bonded enhanced acidity (SHEA) acids: a new class of Bronsted acids

    , Article Journal of the American Chemical Society ; Volume 131, Issue 46 , 2009 , Pages 16984-16988 ; 00027863 (ISSN) Tian, Z ; Fattahi, A ; Lis, L ; Kass, S. R ; Sharif University of Technology
    2009
    Abstract
    Hydrogen bonds are the dominant motif for organizing the three-dimensional structures of biomolecules such as carbohydrates, nucleic acids, and proteins, and serve as templates for proton transfer reactions. Computations, gas-phase acidity measurements, and pKa determinations in dimethyl sulfoxide on a series of polyols indicate that multiple hydrogen bonds to a single charged center lead to greatly enhanced acidities. A new class of Brønsted acids, consequently, is proposed. © 2009 American Chemical Society  

    Self-assembly of tryptophan-capped gold nanoparticles onto DNA network template

    , Article Journal of Dispersion Science and Technology ; Volume 30, Issue 2 , 2009 , Pages 254-258 ; 01932691 (ISSN) Sheikholeslami, Z ; Vosoughi, M ; Alemsadeh, I ; Sharif University of Technology
    2009
    Abstract
    In this study, a simple route to the formation of DNA-gold complex has been reported, using immobilized DNA as a template. The nanoporous gold films have been prepared by the electrostatic self assembly of gold nanoparticles capped with tryptophan. Tryptophan would improve surface properties of gold nanoparticles for strongly attaching to DNA. Fourier transform infrared spectroscopy confirmed that gold nanoparticles have been capped by tryptophan. Also measured zeta potential shows that there are positive charges on the surface of gold nanoparticles. Investigations by atomic force microscopy substantially confirm that tryptophan-capped gold nanoparticles can be bonded to DNA template...