Loading...
Search for: output-voltages
0.006 seconds
Total 39 records

    A single-switch quadratic boost with stacked zeta converter

    , Article 12th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2021, 2 February 2021 through 4 February 2021 ; 2021 ; 9780738111971 (ISBN) Eskandari, R ; Tarzamni, H ; Sabahi, M ; Khoun Jahan, H ; Mohammadsalehian, S ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    A high step-up converter including one active switch is presented in the present work. The introduced structure is a combination of Quadratic boost converter and Zeta converter; therefore, it features low input and output current ripples. The energy of leakage inductor is inherently recovered and the voltage spike on switch is perfectly mitigated. The voltage across diodes and switch is quite lower than the boosted output voltage which can be a prominent issue in high step-up converters. This can lead to employ switches and diodes with low conduction losses causing overall efficiency to increase. The converter function in CCM and DCM are analyzed, and the voltage conversion ratio along with... 

    Operation and design analysis of an interleaved high step-up DC–DC converter with improved harnessing of magnetic energy

    , Article International Journal of Circuit Theory and Applications ; Volume 49, Issue 2 , 2021 , Pages 221-243 ; 00989886 (ISSN) Sabahi, M ; Tarzamni, H ; Kolahian, P ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In this paper, a new interleaved DC–DC converter based on a coupled and a single input inductor is proposed. The suggested high step-up converter utilizes various inductive and capacitive methods to transfer magnetic energy more efficiently. The output voltage is regulated with the switches' duty cycle and the coupled inductor (CI) turns ratio, which provide a wide output voltage range. Interleaving improves the converter reliability, employs both the first and third areas of CI's B-H plane, cancels DC component of the CI, and reduces the input current ripple of the proposed converter with twice switching frequency. Utilization of two output ports for voltage stress and ripple reduction in... 

    A new high step-up interleaved LLC converter

    , Article 12th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2021, 2 February 2021 through 4 February 2021 ; 2021 ; 9780738111971 (ISBN) Amani, D ; Beiranvand, R ; Zolghadri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this study, a new LLC resonant converter for high-voltage high-power applications is introduced. The introduced power converter is a two-phase interleaved full-bridge based that uses a transformer with secondary and tertiary windings to obtain higher output voltage. Zero voltage switching (ZVS) at MOSFETs turn on and zero current switching (ZCS) for all the output diodes at turn off are achieved for a wide range of input voltage (100 V-200 V) and output power (200 W-1500 W) variations. Simulation results show a 95% peak efficiency. © 2021 IEEE  

    Multi-input high step-up inverter with softswitching capability, applicable in photovoltaic systems

    , Article IET Power Electronics ; Volume 13, Issue 1 , 2020 , Pages 133-143 Babaei, E ; Tarzamni, H ; Tahami, F ; Khoun Jahan, H ; Bannae Sharifian, M. B ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    In this study, a new multi-input high step-up inverter, based on isolated soft-switching DC-DC converter blocks is proposed. Each of these blocks can provide zero-voltage and zero-current switching for its semiconductors, which improve power efficiency. The interesting feature of this DC-DC converter is using bidirectional switches to generate both positive and negative output voltage levels in each DC-DC block with an appropriate control scheme. Each DC-DC converter operates by simple pulse width modulation control through fixed frequency and has two degrees of freedom, which provide the capability of output voltage regulation or maximum power point tracking. The proposed inverter consists... 

    An Extremely low ripple high voltage power supply for pulsed current applications

    , Article IEEE Transactions on Power Electronics ; Volume 35, Issue 8 , 2020 , Pages 7991-8001 Zarghani, M ; Mohsenzade, S ; Hadizade, A ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This article describes the development of an 18 kV, 30 kW power supply for a pulsed current load with the maximum current of 20 A and a di/dt equal to 100 A/μs. The achieved output ripple is less than 0.01%. In such a high level of precision, the most important issues are considerable difference between the instantaneous and average output powers, as well as insufficient reaction speed of the converter to the fast load change. Very low level of the voltage feedback and its sensitivity to the noise. The first issue necessitates a notable overdesign of the converter switches if the output voltage precision is dedicated to the converter. The second issue raises the problems relevant to... 

    A high voltage variable inductor LCC resonant converter with high power factor over wide load range

    , Article 10th International Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2019, 12 February 2019 through 14 February 2019 ; 2019 , Pages 279-284 ; 9781538692547 (ISBN) Aghaei, M ; Ayoubi, R ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    High voltage power supplies (HVPS) are widely used to supply vacuum tubes. Regarding to their high efficiency, resonant converters are a choice of HVPS structure. In this application, HVPS is faced with wide variation of the load power. On the other hand, output voltage regulation over wide load range is essential. However, there are several problems dealing with resonant converters such as output voltage regulation and low-efficient performance in a light load. In this paper, a control scheme for a series-parallel resonant converter is presented. This scheme regulates the output voltage of the converter over load variation range. A variable inductor placed as the series inductor in the... 

    Post fault vector control of an induction motor fed by a chb inverter

    , Article 10th International Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2019, 12 February 2019 through 14 February 2019 ; Pages 149-154 , 2019 ; 9781538692547 (ISBN) Fathi, M ; Zolghadri, M ; Ouni, S ; Babaloo, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a new post-fault vector control of an induction motor, fed by a faulty Cascaded H-Bridge (CHB) inverter, is presented. Among fault tolerant control methods, waveform based methods are suitable for closed-loop control and provide higher output voltage. In order to control the speed of the motor, a rotor field oriented control (RFOC) is used. During the fault, the FOC is modified to decrease the fault impact on the motor as low as possible. The proposed method is validated by means of simulation results for different loads and faults. The results show an improvement in both the final operating point and the transient response of the motor  

    Enhanced hybrid modular multilevel converter with improved reliability and performance characteristics

    , Article IEEE Transactions on Power Electronics ; Volume 34, Issue 4 , 2019 , Pages 3139-3149 ; 08858993 (ISSN) Razani, R ; Ravanji, M. H ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper proposes an enhanced hybrid modular multilevel converter (MMC), which utilizes a combination of half-bridge submodules (HBSM) and at least one full-bridge submodule (FBSM). In the proposed structure, FBSMs work with half of the HBSMs nominal voltage in each arm. Due to the presence of FBSMs, HBSMs switching frequency drops significantly, which reduces the converter power loss compared to half-bridge based MMCs. Furthermore, because of redundant FBSMs, (2N + 1)-modulation can be employed to generate the output voltage without increasing the circulating current, thus, the converter performance is improved notably. Besides, with the redundant FBSMs, the converter can continue its... 

    A low-power technique for high-resolution dynamic comparators

    , Article International Journal of Circuit Theory and Applications ; Volume 46, Issue 10 , 2018 , Pages 1777-1795 ; 00989886 (ISSN) Khorami, A ; Sharifkhani, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    A low-power technique for high-resolution comparators is introduced. In this technique, p-type metal-oxide-semiconductor field-effect transistors are employed as the input of the latch of the comparator just like the input of the preamplifier. The latch and preamplifier stages are activated in a special pattern using an inverter-based controller. Unlike the conventional comparator, the preamplification delay can be set to an optimum low value even if after the preamplification, the output voltages is less than n-channel metal-oxide semiconductor voltage threshold. As a result, the proposed comparator reduces the power consumption significantly and enhances the speed. The speed and power... 

    An enhanced hybrid modular multilevel converter for improved performance

    , Article IEEE Transactions on Power Electronics ; 2018 ; 08858993 (ISSN) Razani, R ; Ravanji, M. H ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    This paper proposes an enhanced hybrid modular multilevel converter (MMC), which utilizes a combination of halfbridge submodules (HBSM) and at least one full-bridge submodule (FBSM). In the proposed structure, FBSMs work with half of the HBSMs nominal voltage in each arm. Due to the presence of FBSMs, HBSMs switching frequency drops significantly, which reduces the converter power loss compared to half-bridge based MMCs. Furthermore, because of redundant FBSMs, (2N+1)-modulation can be employed to generate the output voltage without increasing the circulating current, thus the converter performance is improved notably. Besides, with the redundant FBSMs the converter can continue its... 

    Non isolated ZCT DC-DC converter for high step-up, high efficiency applications using resonant PWM technique

    , Article 9th Annual International Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2018, 13 February 2018 through 15 February 2018 ; Volume 2018-January , April , 2018 , Pages 398-403 ; 9781538646977 (ISBN) Sadeghpoor, D ; Habibagahi, I ; Zolghadri, M. R ; Atarodi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    This paper presents a new topology for DC/DC converter which satisfies the need for high gain, high efficiency, low weight and low cost for renewables application. This topology is a novel approach of Resonant PWM converters which produces high output voltage with soft switching method (ZVS). The converter can be controlled both by PWM and frequency variation method. The main characteristics of this structure are illustrated using simulation results and compared with other well-known structures. © 2018 IEEE  

    Reducing output voltage THD of a three-phase inverter with non-linear load using disturbance observer

    , Article 8th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2017, 14 February 2017 through 16 February 2017 ; 2017 , Pages 431-436 ; 9781509057665 (ISBN) Valizade Alavi, S ; Tahami, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Non-linear loads such as rectifiers are growing in industry. Three phase inverter with non-linear load can lead to highly distorted output voltage. This paper proposes a method for reducing voltage THD in three phase inverters with non-linear load. The proposed method considers the load current as a disturbance and provide a control strategy to reject it using the disturbance observer method. This method doesn't need any additional sensors or hardware and is implemented digitally in controller. Simulation results show that the presented method will reduce the total harmonic distortion of the output voltage. © 2017 IEEE  

    Improvement of post-fault performance of a cascaded h-bridge multilevel inverter

    , Article IEEE Transactions on Industrial Electronics ; Volume 64, Issue 4 , 2017 , Pages 2779-2788 ; 02780046 (ISSN) Ouni, S ; Zolghadri, M. R ; Khodabandeh, M ; Shahbazi, M ; Rodríguez, J ; Oraee, H ; Lezana, P ; Schmeisser, A. U ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper is focused on improving the post-fault performance of cascaded H-bridge multilevel inverters by decreasing the common-mode voltage. First, an algorithm is proposed to determine the optimal post-fault state among all possible states, which have the same maximum available voltage. Furthermore, a modified technique is proposed to calculate the references of inverter phase voltages under faulty conditions. This technique leads to a decrease in the common-mode voltage when the required output voltage is less than its maximum value. These solutions are mutually employed in the post-fault control system. Simulation and experimental results confirm the effectiveness of the proposed... 

    A high-speed method of dynamic comparators for sar analog to digital converters

    , Article 59th IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2016, 16 October 2016 through 19 October 2016 ; 2017 ; 15483746 (ISSN); 9781509009169 (ISBN) Khorami, A ; Sharifkhani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    A low-power high-speed two-stage dynamic comparator is presented. The voltage fluctuation at the first stage of the comparator (pre-Amplifier stage) is limited to V dd=2. Therefore, the power consumption of the first stage which is the dominant part of the total power consumption is reduced. The output voltage of the first stage is kept above V dd=2. As a result, during the comparison the second stage of the comparator (latch) is activated stronger compared to the conventional comparator. To prove the benefits of the proposed comparator, the proposed and the other circuits are simulated in the equal budget of power and offset. Simulation results prove that the proposed comparator is faster... 

    Fast fault detection method for modular multilevel converter semiconductor power switches

    , Article IET Power Electronics ; Volume 9, Issue 2 , 2016 , Pages 165-174 ; 17554535 (ISSN) Haghnazari, S ; Khodabandeh, M ; Zolghadri, M. R ; Sharif University of Technology
    Institution of Engineering and Technology  2016
    Abstract
    This study proposes a new fault detection method for modular multilevel converter (MMC) semiconductor power switches. While in common MMCs, the cells capacitor voltages are measured directly for control purposes, in this study voltage measurement point changes to the cell output terminal improving fault diagnosis ability. Based on this measurement reconfiguration, a novel fault detection algorithm is designed for MMCs semiconductor power switches. The open circuit and short circuit faults are detected based on unconformity between modules output voltage and switching signals. Simulation and experimental results confirm accurate and fast operation of the proposed method in faulty cell... 

    A new t-type direct AC/AC converter

    , Article 6th Annual International Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2015, 3 February 2015 through 4 February 2015 ; February , 2015 , Pages 247-252 ; 9781479976539 (ISBN) Khodabandeh, M ; Zolghadri, M. R ; Noroozi, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    In this paper a novel T type scheme for 1-phase direct ac/ac converters is proposed. In this topology, frequency changing takes place directly (without common DC voltage bus) through three converters that are connected in a T structure. Unity power factor and precise output voltage regulation is achieved through appropriate control of these three converters. H-bridge converters are implemented, as the basic unit, in each branches of T to make the proposed converter. The converter is controlled such that the average active power of each H-bridges remains zero. So capacitors are implemented in DC links of H-bridges. In comparison to conventional back-to-back converters, life time of each... 

    A lab-scale set up for thermal radiation experiments with cold junction compensation

    , Article Education for Chemical Engineers ; Volume 7, Issue 4 , 2012 , Pages e203-e209 ; 17497728 (ISSN) Foad Marashi, S. K ; Farhadi, F ; Fallahpour, N ; Sharif University of Technology
    2012
    Abstract
    The concepts of thermal radiation heat transfer are not tangible for many students. Experiments relied on various parameters can clarify the concepts of this mode of heat transfer.A lab-scale set up is described to study the thermal radiation heat transfer experiments. An electrical circuit of the thermopile sensor is designed and manufactured to provide experimental data.The validity of Inverse Square, Stefan-Boltzmann, and Kirchhoff Laws are investigated experimentally in the setup. Results indicate that, it is necessary to consider temperature shifts in the thermopile cold junction which is a potential source of error. Therefore, the output voltage, corresponding to the sensor... 

    Optimized design and implementation of low-cost, sensitive and versatile vibrating sample magnetometer

    , Article ICEE 2012 - 20th Iranian Conference on Electrical Engineering, 15 May 2012 through 17 May 2012 ; May , 2012 , Pages 202-205 ; 9781467311489 (ISBN) Hosseini, N ; Khiabani, S ; Sarreshtedari, F ; Fardmanesh, M ; Sharif University of Technology
    2012
    Abstract
    Geometry of different electromagnetic parts of Vibrating Sample Magnetometer (VSM) is a major factor of VSM output voltage. In this paper design, geometry optimization and implementation of a sensitive, versatile and relatively inexpensive VSM system has been described. Considering all effective geometrical parameters in the system output voltage, the induced voltage in the pick-up coils has been obtained analytically and the geometry of the pick-up coils has been optimized for maximum output induced voltage. Two opposite series of pick-up coils, piezoelectric based vibration system and required electronic circuits have been designed and the VSM system has been implemented. The implemented... 

    Dual Lagrangian modeling and Lyapunov-based control of four-wire three-level three-phase NPC voltage-source rectifier

    , Article 2012 11th International Conference on Environment and Electrical Engineering, EEEIC 2012, Venice, 18 May 2012 through 25 May 2012 ; 2012 , Pages 744-751 ; 9781457718281 (ISBN) Mehrasa, M ; Abedi, A ; Ahmadigorji, M ; Reykandeh, M. A ; Sharif University of Technology
    IEEE  2012
    Abstract
    An ac neutral wire is connected to the midpoint of the dc bus of the three level/phase NPC rectifiers and then a new dual Lagrangian model of the rectifier is presented in this paper. At first, the load current can be obtained in two forms: 1. the load current involving the current of capacitor C1 2. The load current involving the current of capacitor C2 and then the new model is founded based on the superposition law, the load current and The Euler-Lagrange description of the rectifier. The new model is two nonlinear state space equations and as a result we define two positive definite Lyapunov function candidates based on two equations. Finally two Lyapunov-based controllers are designed... 

    Dual Lagrangian modeling and Lyapunov-based control of three-level three-phase NPC voltage-source rectifier

    , Article 2012 11th International Conference on Environment and Electrical Engineering, EEEIC 2012, Venice, 18 May 2012 through 25 May 2012 ; 2012 , Pages 737-743 ; 9781457718281 (ISBN) Mehrasa, M ; Ahmadigorji, M ; Abedi, A ; Sharif University of Technology
    IEEE  2012
    Abstract
    The load current of three level/phase neutral point clamped rectifier could be expressed in two forms: the load current involving the current of capacitor C1, and the load current involving the current of capacitor C2. Using the Euler-Lagrange model based on the superposition law and the obtained load current, a new dual Lagrangian model of the rectifier is founded in this paper and then the two obtained nonlinear state space models are developed in dq0 reference frame. According to the new model, two positive definite Lyapunov function candidates are defined and a Lyapunov-based control is applied to the rectifier. Each of the function is utilized to control its corresponding output voltage...