Loading...
Search for: output-voltages
0.007 seconds
Total 39 records

    Wide adjustable range LLC resonant converter's maximum switching frequency for realizing the ZVS operation

    , Article Proceedings - 2010 18th Iranian Conference on Electrical Engineering, ICEE 2010, 11 May 2010 through 13 May 2010 ; 2010 , Pages 745-752 ; 9781424467600 (ISBN) Beiranvand, R ; Rashidian, B ; Zolghadri, M. R ; Alavi, M. H ; Sharif University of Technology
    Abstract
    In this paper, the FHA and a simple TDA approaches have been used to derive the normalized maximum switching frequency of wide adjustable range LLC resonant converter for realizing the ZVS operation even under the worst-case conditions. By accounting the resonant current higher harmonics, more accurate expressions are derived. These analyses demonstrate that the normalized maximum switching frequency depends on the dead-time and the converter inductance ratio. It also depends on the ratio of the converter resonant capacitor and the effective capacitance appeared in parallel with the power MOSFETs drain-sources. The simulated and experimental results are in good agreement with the derived... 

    Space vector modulation for four-switch rectifier with compensating the effect of capacitors voltage ripple

    , Article 2009 International Conference on Electric Power and Energy Conversion Systems, EPECS 2009 ; 2009 ; 9789948427155 (ISBN) Ounie, S ; Zolghadri, M. R ; Sharif University of Technology
    Abstract
    A space vector modulation (SVM) approach is proposed to control a four-switch rectifier with power factor correction and compensating the effect of capacitors voltage ripple. The theory and performance of this method are presented, and the method effectiveness is demonstrated by extensive simulations. The simulation results show that the capacitor voltage ripple effects in the output voltage and current shaping can be omitted and the rectifier can work agreeably under high power factor condition although capacitors voltage is not balance. The allowable amount of this unbalanced value of filter capacitors is determined  

    Reducing output voltage THD of a three-phase inverter with non-linear load using disturbance observer

    , Article 8th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2017, 14 February 2017 through 16 February 2017 ; 2017 , Pages 431-436 ; 9781509057665 (ISBN) Valizade Alavi, S ; Tahami, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Non-linear loads such as rectifiers are growing in industry. Three phase inverter with non-linear load can lead to highly distorted output voltage. This paper proposes a method for reducing voltage THD in three phase inverters with non-linear load. The proposed method considers the load current as a disturbance and provide a control strategy to reject it using the disturbance observer method. This method doesn't need any additional sensors or hardware and is implemented digitally in controller. Simulation results show that the presented method will reduce the total harmonic distortion of the output voltage. © 2017 IEEE  

    Post fault vector control of an induction motor fed by a chb inverter

    , Article 10th International Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2019, 12 February 2019 through 14 February 2019 ; Pages 149-154 , 2019 ; 9781538692547 (ISBN) Fathi, M ; Zolghadri, M ; Ouni, S ; Babaloo, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a new post-fault vector control of an induction motor, fed by a faulty Cascaded H-Bridge (CHB) inverter, is presented. Among fault tolerant control methods, waveform based methods are suitable for closed-loop control and provide higher output voltage. In order to control the speed of the motor, a rotor field oriented control (RFOC) is used. During the fault, the FOC is modified to decrease the fault impact on the motor as low as possible. The proposed method is validated by means of simulation results for different loads and faults. The results show an improvement in both the final operating point and the transient response of the motor  

    Optimizing the LLC-LC resonant converter topology for wide-output-voltage and wide-output-load applications

    , Article IEEE Transactions on Power Electronics ; Volume 26, Issue 11 , 2011 , Pages 3192-3204 ; 08858993 (ISSN) Beiranvand, R ; Zolghadri, M. R ; Rashidian, B ; Alavi, S. M. H ; Sharif University of Technology
    2011
    Abstract
    LLC-LC resonant converter is a suitable circuit topology to design switched-mode power supplies for wide-output-voltage and wide-output-load applications. In this paper, a design procedure is introduced to optimize this converter. Unlike soft switching techniques for pulse width modulated converters, which usually apply an active auxiliary circuit to reduce switching losses and EMI, in the proposed converter, not only such circuits are not used, but also all of the parasitic elements are merged to the converters main components. Zero-voltage switching (ZVS) operation is realized for all power devices under all operating conditions. Thus, this converter is a suitable choice for... 

    Optimized design and implementation of low-cost, sensitive and versatile vibrating sample magnetometer

    , Article ICEE 2012 - 20th Iranian Conference on Electrical Engineering, 15 May 2012 through 17 May 2012 ; May , 2012 , Pages 202-205 ; 9781467311489 (ISBN) Hosseini, N ; Khiabani, S ; Sarreshtedari, F ; Fardmanesh, M ; Sharif University of Technology
    2012
    Abstract
    Geometry of different electromagnetic parts of Vibrating Sample Magnetometer (VSM) is a major factor of VSM output voltage. In this paper design, geometry optimization and implementation of a sensitive, versatile and relatively inexpensive VSM system has been described. Considering all effective geometrical parameters in the system output voltage, the induced voltage in the pick-up coils has been obtained analytically and the geometry of the pick-up coils has been optimized for maximum output induced voltage. Two opposite series of pick-up coils, piezoelectric based vibration system and required electronic circuits have been designed and the VSM system has been implemented. The implemented... 

    Optimization of total harmonic current distortion and torque pulsation reduction in high-power induction motors using genetic algorithms

    , Article Journal of Zhejiang University: Science A ; Volume 9, Issue 12 , 2008 , Pages 1741-1752 ; 1673565X (ISSN) Sayyah, A ; Aflaki, M ; Rezazadeh, A ; Sharif University of Technology
    2008
    Abstract
    This paper presents a powerful application of genetic algorithm (GA) for the minimization of the total harmonic current distortion (THCD) in high-power induction motors fed by voltage source inverters, based on an approximate harmonic model. That is, having defined a desired fundamental output voltage, optimal pulse patterns (switching angles) are determined to produce the fundamental output voltage while minimizing the THCD. The complete results for the two cases of three and five switching instants in the first quarter period of pulse width modulation (PWM) waveform are presented. Presence of harmonics in the stator excitation leads to a pulsing-torque component. Considering the fact that... 

    Operation and design analysis of an interleaved high step-up DC–DC converter with improved harnessing of magnetic energy

    , Article International Journal of Circuit Theory and Applications ; Volume 49, Issue 2 , 2021 , Pages 221-243 ; 00989886 (ISSN) Sabahi, M ; Tarzamni, H ; Kolahian, P ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In this paper, a new interleaved DC–DC converter based on a coupled and a single input inductor is proposed. The suggested high step-up converter utilizes various inductive and capacitive methods to transfer magnetic energy more efficiently. The output voltage is regulated with the switches' duty cycle and the coupled inductor (CI) turns ratio, which provide a wide output voltage range. Interleaving improves the converter reliability, employs both the first and third areas of CI's B-H plane, cancels DC component of the CI, and reduces the input current ripple of the proposed converter with twice switching frequency. Utilization of two output ports for voltage stress and ripple reduction in... 

    Non isolated ZCT DC-DC converter for high step-up, high efficiency applications using resonant PWM technique

    , Article 9th Annual International Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2018, 13 February 2018 through 15 February 2018 ; Volume 2018-January , April , 2018 , Pages 398-403 ; 9781538646977 (ISBN) Sadeghpoor, D ; Habibagahi, I ; Zolghadri, M. R ; Atarodi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    This paper presents a new topology for DC/DC converter which satisfies the need for high gain, high efficiency, low weight and low cost for renewables application. This topology is a novel approach of Resonant PWM converters which produces high output voltage with soft switching method (ZVS). The converter can be controlled both by PWM and frequency variation method. The main characteristics of this structure are illustrated using simulation results and compared with other well-known structures. © 2018 IEEE  

    Multi-input high step-up inverter with softswitching capability, applicable in photovoltaic systems

    , Article IET Power Electronics ; Volume 13, Issue 1 , 2020 , Pages 133-143 Babaei, E ; Tarzamni, H ; Tahami, F ; Khoun Jahan, H ; Bannae Sharifian, M. B ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    In this study, a new multi-input high step-up inverter, based on isolated soft-switching DC-DC converter blocks is proposed. Each of these blocks can provide zero-voltage and zero-current switching for its semiconductors, which improve power efficiency. The interesting feature of this DC-DC converter is using bidirectional switches to generate both positive and negative output voltage levels in each DC-DC block with an appropriate control scheme. Each DC-DC converter operates by simple pulse width modulation control through fixed frequency and has two degrees of freedom, which provide the capability of output voltage regulation or maximum power point tracking. The proposed inverter consists... 

    Investigation of the effect of nanosilica on rheological, thermal, mechanical, structural, and piezoelectric properties of poly(vinylidene fluoride) nanofibers fabricated using an electrospinning technique

    , Article Industrial and Engineering Chemistry Research ; Volume 56, Issue 44 , 2017 , Pages 12596-12607 ; 08885885 (ISSN) Haddadi, S. A ; Ahmad Ramazani, S. A ; Talebi, S ; Fattahpour, S ; Hasany, M ; Sharif University of Technology
    Abstract
    The effects of different nano-SiO2 contents on the rheological properties of poly(vinylidene fluoride) (PVDF) solution and mechanical, thermal, structural, and piezoelectric properties of composite nanofibers were investigated. Results showed an increase in fiber diameter (∼125 to 350 nm) and ∼450% increase in tensile strength as the content of nano-SiO2 particles increased. The degree of crystallinity decreased by 19% as the nano-SiO2 content increased by 2% (w/w). Further investigation demonstrated that silica could significantly improve the piezoelectric properties of PVDF nanofibers as the output voltage showed an increase in the presence of silica attributed to change in the crystalline... 

    Input-output linearisation of a fourth-order input-affine system describing the evolution of a three-phase/switch/level (Vienna) rectifier

    , Article IET Power Electronics ; Volume 4, Issue 8 , 2011 , Pages 867-883 ; 17554535 (ISSN) Ansari, R ; Feyzi, M. R ; Akbari Hamed, K ; Sadati, N ; Yasaei, Y ; Ouni, S ; Sharif University of Technology
    Abstract
    This study presents an analytical approach for proper selection of output functions to be regulated for the Vienna rectifier such that the resultant closed-loop systems are minimum phase. Specifically, two different adaptive control methodologies based on the input-output linearisation are developed and categorised. In the first category, three output functions are introduced and imposed to be zero by using three dynamic feedback laws. On the basis of states to be regulated, four different cases are studied and it is shown that only one of these cases results in a one-dimensional zero dynamics with an asymptotically stable equilibrium point. In the second category, two output functions are... 

    Input/output feedback linearization control for three level/phase NPC voltage-source rectifier using its dual lagrangian model

    , Article 2012 11th International Conference on Environment and Electrical Engineering, EEEIC 2012 - Conference Proceedings ; 2012 , Pages 712-718 ; 9781457718281 (ISBN) Mehrasa, M ; Ahmadigorji, M ; Sharif University of Technology
    IEEE  2012
    Abstract
    This paper presents an input/output feedback linearization control strategy for the three-level three-phase neutral-point-clamped rectifier using it's dual Lagrangian modeling, which is obtained based on the superposition law, the load current and The Euler-Lagrange description of the rectifier. The load current can be given in two forms: 1. the load current involving the current of capacitor C1 and 2. The load current involving the current of capacitor C2 Applying the obtained load current to the Euler-Lagrange parameters of the rectifier, two nonlinear models of the system are derived. Also two the power-balance equations between the input and output sides are obtained by considering the... 

    Improvement of post-fault performance of a cascaded h-bridge multilevel inverter

    , Article IEEE Transactions on Industrial Electronics ; Volume 64, Issue 4 , 2017 , Pages 2779-2788 ; 02780046 (ISSN) Ouni, S ; Zolghadri, M. R ; Khodabandeh, M ; Shahbazi, M ; Rodríguez, J ; Oraee, H ; Lezana, P ; Schmeisser, A. U ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper is focused on improving the post-fault performance of cascaded H-bridge multilevel inverters by decreasing the common-mode voltage. First, an algorithm is proposed to determine the optimal post-fault state among all possible states, which have the same maximum available voltage. Furthermore, a modified technique is proposed to calculate the references of inverter phase voltages under faulty conditions. This technique leads to a decrease in the common-mode voltage when the required output voltage is less than its maximum value. These solutions are mutually employed in the post-fault control system. Simulation and experimental results confirm the effectiveness of the proposed... 

    Fast fault detection method for modular multilevel converter semiconductor power switches

    , Article IET Power Electronics ; Volume 9, Issue 2 , 2016 , Pages 165-174 ; 17554535 (ISSN) Haghnazari, S ; Khodabandeh, M ; Zolghadri, M. R ; Sharif University of Technology
    Institution of Engineering and Technology  2016
    Abstract
    This study proposes a new fault detection method for modular multilevel converter (MMC) semiconductor power switches. While in common MMCs, the cells capacitor voltages are measured directly for control purposes, in this study voltage measurement point changes to the cell output terminal improving fault diagnosis ability. Based on this measurement reconfiguration, a novel fault detection algorithm is designed for MMCs semiconductor power switches. The open circuit and short circuit faults are detected based on unconformity between modules output voltage and switching signals. Simulation and experimental results confirm accurate and fast operation of the proposed method in faulty cell... 

    Enhanced hybrid modular multilevel converter with improved reliability and performance characteristics

    , Article IEEE Transactions on Power Electronics ; Volume 34, Issue 4 , 2019 , Pages 3139-3149 ; 08858993 (ISSN) Razani, R ; Ravanji, M. H ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper proposes an enhanced hybrid modular multilevel converter (MMC), which utilizes a combination of half-bridge submodules (HBSM) and at least one full-bridge submodule (FBSM). In the proposed structure, FBSMs work with half of the HBSMs nominal voltage in each arm. Due to the presence of FBSMs, HBSMs switching frequency drops significantly, which reduces the converter power loss compared to half-bridge based MMCs. Furthermore, because of redundant FBSMs, (2N + 1)-modulation can be employed to generate the output voltage without increasing the circulating current, thus, the converter performance is improved notably. Besides, with the redundant FBSMs, the converter can continue its... 

    Dual Lagrangian modeling and Lyapunov-based control of three-level three-phase NPC voltage-source rectifier

    , Article 2012 11th International Conference on Environment and Electrical Engineering, EEEIC 2012, Venice, 18 May 2012 through 25 May 2012 ; 2012 , Pages 737-743 ; 9781457718281 (ISBN) Mehrasa, M ; Ahmadigorji, M ; Abedi, A ; Sharif University of Technology
    IEEE  2012
    Abstract
    The load current of three level/phase neutral point clamped rectifier could be expressed in two forms: the load current involving the current of capacitor C1, and the load current involving the current of capacitor C2. Using the Euler-Lagrange model based on the superposition law and the obtained load current, a new dual Lagrangian model of the rectifier is founded in this paper and then the two obtained nonlinear state space models are developed in dq0 reference frame. According to the new model, two positive definite Lyapunov function candidates are defined and a Lyapunov-based control is applied to the rectifier. Each of the function is utilized to control its corresponding output voltage... 

    Dual Lagrangian modeling and Lyapunov-based control of four-wire three-level three-phase NPC voltage-source rectifier

    , Article 2012 11th International Conference on Environment and Electrical Engineering, EEEIC 2012, Venice, 18 May 2012 through 25 May 2012 ; 2012 , Pages 744-751 ; 9781457718281 (ISBN) Mehrasa, M ; Abedi, A ; Ahmadigorji, M ; Reykandeh, M. A ; Sharif University of Technology
    IEEE  2012
    Abstract
    An ac neutral wire is connected to the midpoint of the dc bus of the three level/phase NPC rectifiers and then a new dual Lagrangian model of the rectifier is presented in this paper. At first, the load current can be obtained in two forms: 1. the load current involving the current of capacitor C1 2. The load current involving the current of capacitor C2 and then the new model is founded based on the superposition law, the load current and The Euler-Lagrange description of the rectifier. The new model is two nonlinear state space equations and as a result we define two positive definite Lyapunov function candidates based on two equations. Finally two Lyapunov-based controllers are designed... 

    Double stage switch mode AC voltage regulator

    , Article 2011 2nd Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2011, 16 February 2011 through 17 February 2011 ; February , 2011 , Pages 187-192 ; 9781612844213 (ISBN) Hajimoradi, M. R ; Yazdian, A ; Mokhtari, H ; Sharif University of Technology
    2011
    Abstract
    Development of high frequency power electronic devices leads to high performance and flexible switch mode AC voltage stabilizers instead of traditional electromechanical types. This paper introduces a novel double stage topology for switch mode AC voltage regulators. The system produces a continuous adjustable isolated AC voltage providing a constant output voltage for sensitive loads. In order to simplify the control strategy, a symmetrical PWM is used. In contrast with conventional AC choppers, the proposed circuit does not need any snubber circuits or voltage and current sensors which leads to a simpler and more reliable circuit. Detailed analysis and simulation results show the... 

    Design of a bridgeless PFC with line-modulated fixed off-time current control and zero-voltage switching

    , Article PECon2010 - 2010 IEEE International Conference on Power and Energy, 29 November 2010 through 1 December 2010 ; 2010 , Pages 129-134 ; 9781424489466 (ISBN) Haghi, R ; Zolghadri, M. R ; Nasirian, V ; Noroozi, N ; Sharif University of Technology
    Abstract
    In this paper, the Line-Modulated Fixed Off-Time method is used as the current control strategy for a Power Factor Corrector (PFC) pre-regulator. A zero voltage switching PWM (ZVS-PWM) auxiliary circuit is configured to perform ZVS in the switches. Soft commutation of the main switch is achieved without additional current stress. A significant reduction in the total conduction loss is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path .The proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode...