Loading...
Search for: shahrokhi--mohammad
0.012 seconds
Total 72 records

    Control of a Crystallization Process

    , M.Sc. Thesis Sharif University of Technology Ahmadi Orkomi, Ali (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    The object of this research is modeling, simulation and control of a crystallization process. Population balance equation (PBE) has been used for modeling of such processes. Most of the existing numerical methods cannot solve the general form of PBE in presence of the breakage and agglomeration terms and some others are not suitable for control objectives, because of their intractable CPU time. In this work a new developed numerical method called conservation element and solution element (CE/SE) has been used for solving general form of multidimensional population balance equations. The accuracy and effectiveness of the scheme is demonstrated through computer simulation. According to the... 

    Simulation and Design of Controller for Production of Acetic Acid in a Bioreactor

    , M.Sc. Thesis Sharif University of Technology Asaadi, Shadi (Author) ; Shahrokhi, Mohammad (Supervisor) ; Vafa, Ehsan (Supervisor)
    Abstract
    Due to advances of biotechnology, control of bioprocess has become very important. The goal of this project is to simulate the acetic acid production bioreactor and designing an adaptive PI controller for this reactor. For this goal, a suitable model has been selected from the literature and simulation has shown that the system has a nonlinear dynamical behavior. In order to control the system in a wide range of operating conditions, the adaptive PI controller was designed. In single input-single output case, the concentration of the product is controlled in such a way that the production rate is maximized, assuming that the pH and temperature are kept constant. Then a two input-two... 

    Control Design for Nonlinear Stochastic Processes in the Presence of Output Constraint

    , M.Sc. Thesis Sharif University of Technology Esfandiar, Khadijeh (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    This work addresses adaptive neural control for a class of stochastic nonlinear systems in the nonstrict-feedback form. By introducing a nonlinear mapping, the output-constrained stochastic system transformed into a new system without constraint. The systems under study is subject to state time delay, input nonlinearity, unavailable states, unknown dynamics and actuator failure. The appropriate Lyapunov-Krasovskii functionals is used to compensate the time-delay effects, the neural network is used to approximate the unknown nonlinearities, the linear state observer is constructed to estimate the unmeasured states, and a variable separation method is used to deal with the difficulty caused by... 

    Control of Unstable Delayed Multivariable Systems

    , M.Sc. Thesis Sharif University of Technology Alamolhoda, Fatemeh (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Existence of time delay and interactions of control loops make control of multivariable delayed systems more difficult، therefore control of these systems is important. In this project a control scheme based on prediction of process output has been proposed. Traditional PI controllers are used in the control structure and controller parameters are tuned by genetic algorithm. Unlike the Smith predictor based methods، which become internally unstable when applied to unstable plants، unstable delayed multivariable systems can be handled by proposed method. It can also be applied to stochastic systems. The robust version of the control scheme has also been designed. Effectiveness of the proposed... 

    Synchronization of Two Chemical Reactors

    , M.Sc. Thesis Sharif University of Technology Babaei Pourkargar, Davood (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Chaotic behavior takes place in different physical systems such as chemical reactors. In this thesis, dynamical behavior of chemical reactors in which polymerization or series reactions take place has been considered. It has been shown that these reactors have chaotic dynamics under special condition. Two reactors of the second type (with series reactions) for cases of known and unknown parameters have been synchronized by a control method and stability of the proposed scheme has been established by the Lyapunov stability theorem. Simulation results show the effectiveness of proposed method. Since concentration measurement is difficult and expensive, an observer has been used for... 

    Simulation and Control of a Nonlinear and Non-Minimum Phase Bioreactor

    , M.Sc. Thesis Sharif University of Technology Baghbeheshti, Mostafa (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Control of fermentation bioreactors with nonlinear behavior is a very important issue, especially when optimizing the biomass production is desired. The system in this situation works in two domains: minimum phase and non-minimum phase; and in transition from one domain into the other one the sign of process gain changes. For control of such a process in this work have been used two non-adaptive strategies and one adaptive strategy. The non-adaptive schemes are pole-placement and model predictive. The pole-placement technique as a linear control algorithm is used and its parameters are fixed by minimizing the objective function which has been used in predictive control technique. Another... 

    Comparison of Dynamic and Static Performances of a Quaternary Distillation Sequence

    , Ph.D. Dissertation Sharif University of Technology Baghmisheh, Gholmarez (Author) ; Shahrokhi, Mohammad (Supervisor) ; Bozorgmehri, Ramin (Supervisor)
    Abstract
    In this work steady state and dynamic performances of quaternary distillation column sequences designed based on steady state and dynamic cost functions have been investigated. To quantify the dynamic performance, product loss due to disturbances has been considered in the objective function. In addition, variations of operating costs such as utilities have been considered in the objective function. To separate a quaternary mixture into four products, twenty two configurations have been used. It has been observed that the feed composition, disturbance frequency and magnitude affect the dynamic behavior strongly. To decrease the optimization computational load, a scheme that provides a... 

    Experimental Investigation and Modeling of Nanoparticles Synthesis by Reactive Precipitation and Using a Spinning Disk Reactor

    , Ph.D. Dissertation Sharif University of Technology Bagheri Farahani, Hamed (Author) ; Shahrokhi, Mohammad (Supervisor) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    In this research work, to enhance the performance of the conventional spinning disk reactors, a novel type of spinning disk reactor has been proposed and tested successfully through the synthesis of barium sulfate nanoparticles by means of the reactive precipitation. This reactor consists of two coaxial rotating disks placed horizontally in a cylindrical chamber. The experimental results clearly indicate the capability of the proposed reactor in the synthesis of nanoparticles with the smaller mean particle size and the narrower particle size distribution compared to those obtained in various process intensification devices such that barium sulfate nanoparticles with a mean particle size of... 

    Simulation and Control of Particle Size Distribution in a Continuous Emulsion Polymerization Reactor

    , M.Sc. Thesis Sharif University of Technology Barazandegan, Melissa (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    In this work, a comprehensive dynamic model has been used for vinyl acetate emulsion polymerization in a continuous reactor to predict the evolution of product particle size distribution under isothermal condition. Method of finite-volume has been applied for solving the population balance equations and the results are compared with the results obtained from moment method. Finite-volume method has been selected as a precise technique to predict sustained oscillations, which occurs in continuous emulsion polymerization. After performing sensitivity analysis and verification of system’s controllability, feed rate of surfactant and initiator have been selected as proper manipulated variables to... 

    Simulation and Control of a Biodiesel Production Reactor

    , M.Sc. Thesis Sharif University of Technology Bostaki, Reyhaneh (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    The diesel fuel produced from vegetable oils or animal fats is called biodoesel. Biodiesel has desired fuel property as an alternative for diesel engines. Moreover, It is biodegerable, non-toxic, environmental friendly and has lesser undesirable exhaust. Due to biodiesel advantages, production of biodiesel and control of the biodiesel production reactor is noteworthy. The objective of this work is to control the mass fraction of the produced ester and the reactor temperature by manipulating methanol feed flow rate and the heat duty of the reactor. For this purpose, an adaptive multivariable generalized model predictive control (GPC) has been applied to the reactor. The results indicate that... 

    Event-Triggered Control of strict feedback Multi-Agent Systems

    , M.Sc. Thesis Sharif University of Technology Beigizadeh, Maryam (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    The objective of this research is designing a controller for the event-triggered control of multi-agent systems in the presence of common constraints. In this regard, an adaptive decentralized event-driven controller is designed for the agents of a multi-agent system. The dynamics of the agents are nonlinear and unknown and they are subject to external disturbances. This controller is capable of achieving the objective of consensus with the desired performance in the presence of sensor and actuator faults, input nonlinearity, input and output quantization, and unmeasured states. The stability of the closed-loop system has been established via Lyapuonov theory. The considered multi-agent... 

    Performance Evaluation of Adaptive PID Controllers

    , M.Sc. Thesis Sharif University of Technology Taghizadeh, Saeed (Author) ; Shahrokhi, Mohammad (Supervisor) ; Vafa, Ehsan (Supervisor)
    Abstract
    The PID controller has been widely used in the industry for many years because of its simple structure and satisfactory performance. If the process is time-varying or has a nonlinear dynamic, the PID controller with constant parameters can not control the process in a wide range of operation and adaptive PID controller should be used. In this thesis, two adaptive controllers proposed in the literature, one for multi-input multi-output (MIMO) affine nonlinear systems and another for single-input single-output (SISO) non-affine nonlinear systems both in the normal form that both of them are extended in to the general form. The latter extended controller includes the MIMO systems. The main... 

    Electrochemical Desulfurization of Sample Oil

    , Ph.D. Dissertation Sharif University of Technology Tavan, Yadollah (Author) ; Farhadi, Fatolla (Supervisor) ; Shahrokhi, Mohammad (Co-Supervisor)
    Abstract
    Since, presence of sulfur compounds in fuels leads to environmental pollution and deacrese of fuel quality, fuel desulfurization should be considered for enhancing the fuel charachteristics. Electrochemical desulfurization was recogonized as one of desulfurization techniques that uses anode and cathode in an electrolytic environment under mild temperature and pressure. In this research, electrochemical desulfurization of crude gas-oil has been studied over electrodes of copper and stainless steel in the presence of NaOH and sulfuric acid. In this research, the effects of operational prameters like stirring rate, temperature, applied potential, sodium hydroxide/sulfuric acid addition as... 

    Control of Fractional Order Systems

    , M.Sc. Thesis Sharif University of Technology Sabeti Meybod, Fatemeh (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    This thesis addresses design of an adaptive tracking control of input-quantized strict-feedback fractional-order nonlinear systems with unknown control directions. The control design is achieved by using a hysteretic quantizer to avoid chattering. The main advantages of the proposed controller are: the fractional order is available for both commensurate and non-commensurate cases, the¬¬ controller design does not depend on the quantization parameters and some restrictive assumptions are relaxed. Additionally only one adaptive law has been used for the unknown control directions which leads to reduction of computational load. By utilizing the backstepping approach and based on the frequency... 

    Oxidative Desulfurization of Light Fuel Oils

    , Ph.D. Dissertation Sharif University of Technology Sobati, Mohammad Amin (Author) ; Molaei Dehkordi, Asghar (Supervisor) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Oxidative desulfurization (ODS) is one of the desulfurization processes that posseses several important advantages such as mild operating conditions. In the present work, oxidative desulfurization of kerosene with a total sulfur content of 2335 ppm and gas oil with a total sulfur content of 7990 ppm were carefully investigated. By evaluation of different oxidation systems, the hydrogen peroxide-formic acid system was selected for the oxidation of sulfur-containing compounds of the light fuel oils. The effects of main operating parameters of the oxidation system including temperature, hydrogen peroxide to sulfur molar ratio (O/S), and formic acid to sulfur molar ratio (Acid/S) on the... 

    Dynamic Simulation of HIV Infection and Its Control

    , M.Sc. Thesis Sharif University of Technology Hajizadeh, Iman (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    This project presents appropriate strategies for HIV infection treatment. In order to close the presented strategy to real treatment regimen, appropriate parameters are selected for the HIV infection model, real outputs are considered for the system, and three widely used drugs (one PI: ritonavir (RDV), two RTIs: lamivudine (3TC) and zidovudine (ZDV)) are used to design a drug regimen. A Luenberger-like nonlinear observer (LNO) is also designed for estimation of unmeasurable states. In order to minimize the side effects of drug regimen, the concentration of ZDV is fixed at a minimum value at all time because this drug has a greater side effects than other drugs and the parameters of... 

    Chaotic and Oscillatory Behavior Analysis and Control of a Bioreactor

    , M.Sc. Thesis Sharif University of Technology Hoseinzadeh, Leila (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    In this thesis, a bioreactor with oscillatory and chaotic behavior has been studied and a control method has been proposed. This bioreactor shows oscillations for some special values of its parameters. The system dynamic is chaotic when a forced perturbation on the feed concentration is imposed. Dynamic behavior of this oscillatory and chaotic reactor has been illustrated. The main objective is control of product concentration. To do this, first system control is considered by proposing several control strategies for SISO case, then system in MIMO case is studied for achieving a globally controllable system. In SISO case, the performances of controllers are compared based on an objective... 

    Control of Unknown Control Direction System

    , M.Sc. Thesis Sharif University of Technology Hosseini Ardali, Mohsen (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    This research is trying to investigate the control algorithms of unknown control direction systems. Since Nussbaum function is the most common method which in used for these systems this research focus on this algorithm to overcome control the effect of unknown control direction. This research study the performance of different control algorithms in controlling such systems followed by analysis of two control modes of continuous and discrete using Nussbam Function. Additionally, in continuous mode, the performance of two methods of backstepping and liding mode has been compared on the given system in variety of situation. Results demonstrate that backstepping method shows better performance... 

    Comparison of Model Predictive Control with Global Linearization Control in Temperature Control of CSTR

    , M.Sc. Thesis Sharif University of Technology Khaksar Toroghi, Masoud (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Controlling the nonlinear processes is very important in industry. In this thesis, model predictive control is considered as a nonlinear control strategy and two nonlinear models, namely wiener and Hammerstein models are used and their identification methods are described. State-space model is also considered and closed-loop stability has been studied. Another strategy for controlling the nonlinear process is global linearization control. Some concepts and related theorems for this strategy are stated. PID controller is used as a linear controller for this strategy. In this model for estimating the state and load, two nonlinear observers are used. Stability analysis of output feedback... 

    Design of an Adaptive Controller for Uncertain Fractional-order Systems Subject to Actuator Failure

    , M.Sc. Thesis Sharif University of Technology Dolatabadi, Shayesteh (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    The objective of this research is to design an adaptive controller for a class of fractional-order nonlinear systems in the strict-feedback form with unmodeled dynamics. Actuator saturation and actuator fault are also considered. All of the system states are assumed to be measurable, and all the sensors can be faulty. Fractional-order systems are chosen because, in the modeling of physical systems, the fractional-order calculus is often preferable to the classical integer-order calculus. The controller is designed by using the backstepping design technique. The fuzzy logic systems are used to eliminate the problem of "explosion of complexity" in the conventional backstepping method and also...