Loading...
Search for: solar-cells
0.012 seconds
Total 369 records

    Electrophoretic Deposition of Titanium Dioxide for Fabrication of Photoanode of Dye Sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Sedighi, Rahime (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    This research is focused on fabrication of TiO2 layers by electrophoretic deposition (EPD) for application as photoanode in Dye Sensitized Solar Cell (DSC). DSCs are third generation of solar cells, also known as the Grätzel cell, after its inventor Michael Grätzel. A DSC is composed of a porous layer of wide band gap semiconductor such as TiO2 and ZnO, covered with a molecular dye that absorbs sunlight, and a counter electrode contacted by a liquid redox electrolyte. Dye Sensitized semiconductor (photoanode) has important role in conversion of photon to electricity. To achieve higher efficiency, preparation of photoanode with high surface area resulted to enough dye adsorption is necessary.... 

    Optimized Pt Coating for High Charge Transfer- High Transparency Cathodes of Dye Sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Mashhoun, Sara (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    Counter electrode of dye sensitized solar cell is prepared by deposition of a thin catalytic layer onto a conducting substrate and is responsible for reduction of iodide/triiodide redox electrolyte. Conventionally, counter electrode is made of platinum.
    Depending on the method of deposition, the thickness of Pt layer varies. The Pt layer may be so thick that it acts as reflector and returns the incident light back to the cell. In this case, large amount of Pt is used and a rise in cost is been made, but only the Pt particles in the interface of counter electrode/electrolyte take part in the reduction reaction.
    The aim of this project is optimization of making a counter electrode,... 

    Fabrication of Monolithic Dye Sensitized Solar Cell Based on Composite Cathode with Platinum Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Ghane Sasansarayi, Zahra (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    Increasing of human demanding for energy and limiting of fossil fuels and bio-logical problems, it seems necessary to access new and clean source of ener-gy. For instance, one of these sources of energy is sun. If we can impart from this infinite energy source so health and natural life can be pictured for human. Nanostructure dye sensitized solar cells in compare with other photovoltaic cells are more economical and practical as a result of lower material cost and simpler manufacturing process. In general, a typical dye sensitized solar cell is a sandwich structure based on two transparent conducting oxide (FTO) glasses. The FTO glass substrates are expensive and account for most of... 

    Fabrication of one Dimensional Nano-Structured of Titanium Dioxide and their Application in Dye Sensitized Solar Cells

    , M.Sc. Thesis Sharif University of Technology Rahimi, Sanam (Author) ; Iraji Zad, Azam (Supervisor)
    Abstract
    In this research we focus on study and fabrication of titanium dioxide nanofibers and their application in preparation of dye sensitized solar cell’s photo anode in order to improve optical and electrical properties. Titanium dioxide nanofibers was prepared by electroespinning method. To investigate the effect of nanofiber diameter on optical and electrical properties of photo anode, three different diameter of titanium dioxide nanofibers with diameters of 100-200 nm, 200-300 nm and 500-600 nm was prepared by varying the type or amount of polymer in the electrospinning solution and fixing other conditions of electrospinning process. By use of these structures, paste of pure fibers in form of... 

    Quantum Well Solar Cell

    , M.Sc. Thesis Sharif University of Technology ZareBidaki, Homa (Author) ; Faez, Rahim (Supervisor)
    Abstract
    In this thesis, the goal is to improve the efficiency of quantum and solar cell. The effect of quantum wells was simulated by Silvaco. Initially, the quantum well has been adjusted to a cell junction GaAs. Then, using quantum wells in cell junction towing and three, improving short-circuit, the returns will be 53.79% and 54.33%. This efficiency is about 10% more than the triple-junction solar cells. To improve the efficiency effects of layer thicknesses, parameters, and the number of quantum wells were studied.Tandem cell is 〖In〗_0.51 〖Ga〗_0.49 P/GaAs, and triple is 〖In〗_0.51 〖Ga〗_0.49 P/GaAs/〖In〗_0.28 〖Ga〗_0.72 As. By adjusting the quantum well and sandwiching the well layers staggered by... 

    Selection of a Nanostructured Pattern for Increasing Absorption Efficiency of a Solar cell Based Based on TiO2

    , M.Sc. Thesis Sharif University of Technology Daneshvare Asl, Shervin (Author) ; Sadrnezhad, Khatiboleslam (Supervisor) ; Mohammadi, Mohammad Reza (Co-Advisor)
    Abstract
    Dye–sensitized solar cell (DSSC) includes (a) A transparent conductive oxide coated glass substrate, (b) Semi conductive film, (c) Dye adsorbed on this film, (d) Redox couple electrolyte and (e) A counter electrode which can reduce redox couple.In this study, selection of a nanostructured pattern for increasing absorption efficiency of a DSSC based on TiO2 has been considered. For this purpose, using carbon nanotubes (CNTs) in fabrication of photoelectrode has been proposed. Therefore, at the first TiO2–CNT nanocomposites contained various percent of carbon nanotube was coated on fluorinated tin oxide (FTO) conductive glasses via sol–gel dip coating method. Then DSSCs were assembled by... 

    Morphological Manipulation of Photo-Anode Electrode of Nano-Structured TiO2 Dye-Sensitized Solar Cells

    , M.Sc. Thesis Sharif University of Technology Moradzaman, Mozhgan (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Dye-sensitized solar cells (DSSCs) are Photoelectrochemical cells using wide band gap nanoporous oxide semiconductors sensitized by dye molecules. For achieving high efficiency DSSCs preparation of photoanode electrode with high surface aea which leads to adequate dye absorption is necessary. In order to achieve proper morphology, thickness, particles size and porosity, producing a TiO2 nano-structured paste is required. TiO2 powder was prepared using sol-gel method. following a calcination process at 300 degrees, XRD patterns showed presence of anatase and brookite structures with average crystallite size of 9 nm. Additives such as diethylene glycol, acetylacetone and Triton X-100 were used... 

    Nano Structure TiO2 Films by Hybrid PEO-Hydrothermal Method for Dye Sensitised Solar Cell Applications

    , M.Sc. Thesis Sharif University of Technology Shakoorian, Sheida (Author) ; Faghihi-Sani, Mohammad Ali (Supervisor) ; Mohammadpour, R (Co-Advisor)
    Abstract
    This thesis demonstrate a new hybrid Plasma Electrolytic Oxidation (PEO)-Hydrothermal method to produce a nano-structured TiO2 layer over a titanium substrate. Microstructural characterization was carried out by using a FE-SEM to explore nano scale structural changes due to hydrothermal treatment. More over EDS was used to analyse elements of the coating. The FE-SEM images confirmed formation of a 3D network consisting “nano flakes+nano fibers”after 6 or 12 hours and a ”sea urchin like nanostructure+nano fibers” after 24 hour. To improve the performance of nano-structured photoelectrodes, different electrolytes were studied to achieve maximum amount of anatase phase. the best results was... 

    Fabrication of Dye-Sensitized Solar Cells Based on TiO2-ZnO Double Layer Nanostructured Film

    , M.Sc. Thesis Sharif University of Technology Rostami, Parand (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    In the present work, one dimensional ZnO nanostructures were grown by seed-assisted hydrothermal method. Hydrothermal processing parameters were controlled to obtain ZnO nanorods with diameter lower than 120 nm. The products were characterized by FE-SEM, EDAX, XRD, PL, and ATR-FTIR analyses. ZnO nanoparticles were also synthesized via a simple solvothermal method and their photo peropeties were compared with onedimensional nanostructures. Thereafter dye-sensitized solar cells based on TiO2-ZnO double layer nanostructured film were fabricated. It was observed that DSSC efficiency increased with decreasing the thickness of the film. The highest efficiency of 2.41% was obtained  

    Circuit Model for Periodic Plasmonic Nanostructures Used as Light-rapping Back-structures in thin Film Solar Cells

    , M.Sc. Thesis Sharif University of Technology Yarmoghaddam, Elahe (Author) ; Mehrany, Khashayar (Supervisor) ; Khavasi, Amin (Co-Advisor)
    Abstract
    In recent years, thin-film photovoltaic cells with thicknesses of less than 1-2 µm have been developed with potentially lower production costs. Due to the small thickness of the absorbing semiconductor in these cells, the absorption is inevitably low at energies close to the electronic band gap of the semiconductor. This is particularly a problem for thin-film devices. Recently، periodic metallic nanostructures supporting surface plasmons have been introduced as alternative solutions to achieve light trapping in thin-film solar cells.Full numerical methods are usually used for the analysis of these periodic structures. The main drawback of these methods is that they are time-consuming and... 

    Synthesis of Titania Hollow Spheres in Dye Sensitized Solar Cell Application

    , M.Sc. Thesis Sharif University of Technology Tabari Saadi, Yasaman (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    In the current research, Anatase-Rutile Titania hollow spheres were synthesized using hydrothermally prepared carbon spheres as template. Different calcination temperatures were used to remove carbon template and crysalized Titania. The characterizations for the physicochemical properties of prepared samples were carried out by XRD, FESEM, XPS, DRS, UV-Vis and FTIR.It is found that doping of carbon in the crystal structure of Titania hollow sphere, cause red shift in band gap wavelenght and the absorption wavelength edge was expanded to the visible light region and the additional diffusive electronic states were observed on the valence band spectra of samples.The photoelectric conversion... 

    Fabrication of TiO2 Dye-sensitized Solar Cells with Different Morphologies and Phase Compositions of Scattering Layer

    , M.Sc. Thesis Sharif University of Technology Musavi Gharavi, Paria Sadat (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Different types of morphologies and phase structures of crystalline TiO2 were synthesized by hydrothermal methods. For the first time, dandelion-like rutile TiO2 powder composed of numerous single crystalline nanorods was synthesized using TiCl4 as the main precursor. TiO2 Nanoparticles were produced using TTIP and 2-propanol, as precursor and solvent, respectively. Field emission scanning electron microscopy analyses revealed that the synthesized TiO2 nanoparticles had average crystallite size in the range 21–70 nm, whereas dandelion-like TiO2 showed diameter in the range 2-10 µm. According to the significant refractive index of TiO2, in particular rutile phase, it can be used in the... 

    Roduction of Solar Grade Silicon by Thermal Refining of Industrial Grade Silicon

    , M.Sc. Thesis Sharif University of Technology Fazlali, Reza (Author) ; Yoozbashizadeh, Hossein (Supervisor)
    Abstract
    The photovoltaic (PV) industry is in rapid growth and a large supply of PV feedstock materials must be provided to maintain this growth. Since silicon is still the dominant material for the fabrication of solar cells, low-cost solar-grade silicon (SoG-Si) feedstock is demanded. The most cost-effective and direct approach for producing SoG-Si is to purify and upgrade metallurgical-grade silicon. The major impurities in silicon are Al, Fe and Ca. other impurities present are Cu, Ti , Zn, Ni, Cr, Mn, Cd, B and P. In this study The effects of the acid leaching process parameters, including the particle size of silicon, the acid type (HCl, HNO3, H2SO4, and their combination), tmepreture and the... 

    Effect of TiO2-based Nanocomposite Scattering Layer on Photovoltaic Characteristics of Dye Sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Asgari Moghaddam, Hatameh (Author) ; Seyyed Reihani, Morteza (Supervisor) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Many efforts have been put into increasing the efficiency of dye-sensitized solar cells that part of it has been devoted to structure and chemical composition of photoanode electrode. In this thesis, the effect of changes in the composition and its influence on light scattering ability in photoanode of dye sensitized solar cells was studied.First, the nanoparticles of titanium dioxide powder through solvothermal method as well as spherical particle and barium titanate powder by sol-gel method were synthesized. XRD and FE-SEM analyses indicated that synthesized powders are in good size and morphology regarding the intended chemical composition. Optical properties of TiO2 particles were... 

    Efficiency Enhancement of Silicon Solar cell with Metallic Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mehdi (Author) ; Sadighi Bonabi, Rasoul (Supervisor)
    Abstract
    By using Mie theory and experimental data for complex refractive index of Au and Ag nanoparticles, the scattering and absorption efficiency of these nanoparticles in silicon medium (crystalline, Polycrystalline and amorphous silicon) was investigated. It was shown that Ag and Au nanoparticles can be used for confine the light, in desired wavelength band, inside the solar cell.The optimum nanoparticle size for using in this kind of solar cells was about 70-80 nm. In amorphous silicon confined photons cannot participate in electron-hole generation so the application of these metal nanoparticles in this kind of solar cells cannot be useful. Also the complex refractive index for equivalent... 

    Preparation of Mg-doped TiO2 Nanoparticles for Dye-sensitized Solar Cell Applications

    , M.Sc. Thesis Sharif University of Technology Safaee, Mahtab (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Dye-sensitized solar cell (DSSCS) is the third-generation of solar cells based on semiconductors formed between a photo sensitized anode and counter cathode which make a photo electrochemical system. They haven’t been commercially marketed due to their lower efficiency than the previous generations. In order to achieve the higher efficiency, the electron injection and light absorption must be increased. One way to increase electron injection is doping the semiconductor with an external ion to reduce lattice band gap. In this work, we made powder and Nano-structured film of titanium dioxide doped with various molar ratios of Mg by the sol-gel process. The effect of Mg:Ti molar ratio on... 

    Simulation of Organic Solar Cells

    , M.Sc. Thesis Sharif University of Technology Bahrami, Ali (Author) ; Faez، Rahim (Supervisor)
    Abstract
    Solar cells are one of the most promising clean and readily available energy sources. Organic solar cells as a new generation of solar cells, have attracted strong attention in recent years, due to the advantages of flexibility, thinness, and simple manufacturing process. This work focuses on the electrical processes in organic solar cells and approaches for enhancing the efficiency of solar cell by employing two-dimensional drift-diffusion model. At the first step. We investigate the role of different parameters such as mobility (considering different recombination mechanisms), active layer thickness, light intensity, barrier injections and energetic disorder on the performance of single... 

    Improvement of Light Scattering Effect of Dye –sensitized Solar Cells Aided by Different Structures of Titanium Dioxide

    , M.Sc. Thesis Sharif University of Technology Sarvari, Najmeh (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Structure and morphology of titanium dioxide have an excessive effect on the photovoltaic properties of dye-sensitized solar cells (DSCs). Different approaches have been used to improve the efficiency of these cells. One is using a scattering layer. Studies have been shown that properties of scattering layer such as composition and morphology have great effect on photovoltaic properties of solar cell. In this project, the effect of cubic morphology of TiO2 as a scattering agent in photoanode of DSCs is studied. Titanium dioxide with various morphologies including nanoparticles, solid and hollow cubic structures have been synthesized by solvothermal and hydrothermal methods, respectively. The... 

    Single Sided Dye Sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Behrouznejad, Fatemeh (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    In this project single sided dye sensitized solar cell is introduced as a new design that has both of electrodes in one side. These electrodes can be separated vertically by a thin insulator layer such as SiO2 or horizontally by lithographic method. First a metallic thin film is patterned by lithography, and then thickened by electrochemical deposition of Chromium. Platinum is electrodeposited on the substrate of counter electrode and a thin spacer layer is deposited on Platinum layer to separate it from Titanium dioxide layer.
    In Chapters 1, 2 & 3 basic science and methods which are needed for doing this project is introduced. In chapter 1 material for making a standard dye sensitized... 

    Fabrication and Characterization of Electron Transport and Buffer Layer Thin Films, Employing Sputtering Method, for All-Oxide Solar Cells

    , M.Sc. Thesis Sharif University of Technology Farahani, Elham (Author) ; Iraji zad, Azam (Supervisor) ; Mohammadpour, Raheleh (Co-Advisor)
    Abstract
    In this study, transparent conductive thin film of Aluminum doped ZnO (ZnO:Al) have been fabricated thorough RF sputtering. The main goal of fabrication of these layers is achieving thin films with minimum resistivity and maximum optical transparency in visible range of spectrum employing as transparent electrodes and buffer layer at the entirely oxidized solar cells. To achieve the suitable structure, various parameters including pressure, power and the thickness of the deposition and annealing on morphologies of thin film has been investigated. According to these results, thin film of ZnO:Al has the transparency of 80% in the visible light range . Doping of ZnO with Aluminum caused...