Loading...
Search for: solar-cells
0.017 seconds
Total 369 records

    Improvement of Perovskite Coating to Increase Operation Efficiency of Photovoltaic Cells

    , Ph.D. Dissertation Sharif University of Technology Zarenezhad, Hamaneh (Author) ; Askari, Masoud (Supervisor) ; Halali, Mohammad (Supervisor)
    Abstract
    In this work, polyvinylidene difluoride (PVDF) as a ferroelectric polymer, polyaniline (PANI) and polypyrrole (PPy) as conductive polymer additives are used to fabricate high performance mesoporous CH3NH3PbI3-xClx mixed-halide perovskite solar cells in a sequential deposition method. Using polymer additives in perovskite precursor solution leads to modification of perovskite layer morphology by changing nucleation and growth of perovskite grains. Besides, conductive polymer additives in perovskite layer help to more charge carrier transfer. Power conversion efficiency has been enhanced from 10.40 % to 16.51% and to 13.21 % in ambient atmosphere in the presence of 1.0 wt. % of PVDF and PPy... 

    Fabrication and Characterization of Carbon-based Perovskite Solar Cells

    , Ph.D. Dissertation Sharif University of Technology Ramin Afshar, Camellia (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Hole-transporter-free perovskite solar cells with structure of TiO2/ZrO2/C triple-layer scaffold filled with perovskite are great alternative to the conventional ones due to the possibility of making full printable low-cost and stable devices. In the present work, the impacts of the structures of the quadruple layer scaffold in the form of TiO2/ZrO2/NiO/C and triple layer scaffold in the form of TiO2/ZrO2/C on their photovoltaic performance are studied. In addition, the effects of thickness and deposition method of each layer were investigated as well as the effect of compounding of the carbon counter electrode. All devices were constructed by a simple printable method. Electrochemical... 

    Ni-doped TiO2 Photoanode Electrodes for Dye-sensitized Solar Cells Applications

    , M.Sc. Thesis Sharif University of Technology Honarvar, Marjan (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    A new strategy for enhancing the efficiency of TiO2 dye sensitized solar cells (DSSCs) doped with Ni ions with different molar percentages (i.e., 0, 0.5, 1, 5 and 10 mol%) was reported. The samples were prepared by sol-gel route and characterized by means of XRD, DRS, UV-visible, FESEM and photovoltaic measurment techniques. It was found that Ni-doped TiO2 nanoparticles had a mixture of anatase, rutile and brookite crystal structures. Moreover, the band gap energy was decreased with increasing Ni molar ratio, The highest cell efficiency of 5.4% was achieved for 1mol% Ni-doped TiO2, being 42% greater than that of pure TiO2 nanoparticles  

    Preparation of Mg-doped TiO2 Nanoparticles for Dye-sensitized Solar Cell Applications

    , M.Sc. Thesis Sharif University of Technology Safaee, Mahtab (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Dye-sensitized solar cell (DSSCS) is the third-generation of solar cells based on semiconductors formed between a photo sensitized anode and counter cathode which make a photo electrochemical system. They haven’t been commercially marketed due to their lower efficiency than the previous generations. In order to achieve the higher efficiency, the electron injection and light absorption must be increased. One way to increase electron injection is doping the semiconductor with an external ion to reduce lattice band gap. In this work, we made powder and Nano-structured film of titanium dioxide doped with various molar ratios of Mg by the sol-gel process. The effect of Mg:Ti molar ratio on... 

    Preparation of Ag-doped TiO2 Nanostructured Films for Dye-Sensitized Solar Cells Applications

    , M.Sc. Thesis Sharif University of Technology Rahnejat, Bibi (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Dye-sensitized solar cells (DSSCs) have been intensively studied duringthe last decade as a promising third solar cellgeneration due to their potential low-cost manufacturingprocess. DSSCsare based on a semiconductor (i.e., TiO2), formed between a photo-sensitized anode and an electrolyte. In order to reach high conversion efficiencies, it isimportant to increase the electron injection and opticalabsorption. One promising solution to increase the electroninjection is to decrease the large band gap of TiO2 bydoping a foreign ion into TiO2 lattice.
    In the present study, Ag- doped TiO2 powders and films with different Ag:Ti molar ratios are reported. The effect of dopant at.%, annealing... 

    Fabrication and Optimization of Copper-Based Multicomponent Chalcogenide Layers Using Colloidal Ink Aimed to Apply in Nanostructured Solar Cells

    , Ph.D. Dissertation Sharif University of Technology Heidari Ramsheh, Maryam (Author) ; Mahdavi, Mohammad (Supervisor) ; Taghavinia, Nima (Supervisor)
    Abstract
    The aim of this thesis was to study and fabricate stable inks of Cu2SnS3 (CTS), Cu2ZnSnS4 (CZTS) and Cu3SbS4 (CAS) copper-based chalcogenide nanoparticles (NPs) and their application in solar cells. Inorganic semiconductors with p-type conductivity, high stability, high hole mobility (compared to organic type), and the ability to synthesize and deposition by simple low temperature solution-based methods have the potential to provide suitable alternative for hole-transporting material (HTM) in perovskite solar cells (PSCs) and the photo-absorbers in thin film solar cells (TFSCs). The ability to adjust energy levels and optoelectrical properties is another advantage of these compounds. In... 

    Preparation of Colloidal Chalcopyrite Nanoparticles Aimed for Device-Quality Thin Films Used in Solar Cell Applications

    , M.Sc. Thesis Sharif University of Technology Khosroshahi, Rouhollah (Author) ; Taghavinia, Nima (Supervisor) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    In this research, the technology of fabrication and deposition of nanoparticle inks from chalcogenide compounds and then use of them in the fabrication of CuInGaS2 and Perovskite thin-film solar cells have been considered. In the first step, the synthesis of CuInGaS2 family compounds with variable In / Ga ratio and also the change of the stoichiometric ratio of Cu component using oleylamine solvent is investigated. In addition to these compounds, the synthesis of CuSnS, CuBaSnS, and CuZnSnS nanoparticles is also investigated. The synthesized nanoparticles were analyzed by XRD, DLS, UV-Vis, ICP, PL, SEM, EDX, and TEM. Then, the stability of the ink made of CuInGaS2 nanoparticles in different... 

    Investigation of the Ion Migration Mechanism and its Effect on the Slow Response of Perovskite Solar Cells

    , Ph.D. Dissertation Sharif University of Technology Ebadi Garjan, Firouzeh (Author) ; Taghavinia, Nima (Supervisor) ; Mohammadpour, Raheleh (Supervisor)
    Abstract
    In recent years, organo-metal perovskite solar cells have attracted remarkable attention due to their low cost manufacturing method as well as the rapid growth of efficiency. Despite the fast growing efficiency of organo-metal perovskite solar cells, there are big challenges around their low stability under real operational condition. In addition to extrinsic parameters like oxygen and humidity, intrinsic instability of perovskite rises mainly from ion migration in perovskite film. In order to understand the ion migration and its effect on photovoltaic parameters of the devices, appropriate characterizations and analysis are needed. Since ions are much slower compare to electrons, their... 

    Printable Carbon Electrode for Perovskite & Thin Film Solar Cells

    , Ph.D. Dissertation Sharif University of Technology Mashhoun, Sara (Author) ; Taghavinia, Nima (Supervisor) ; Tajabadi, Fariba (Supervisor) ; Mohammadpour, Raheleh (Supervisor)
    Abstract
    Solar cells, as a part of photovoltaics (PV) industry, have a significant share in the renewable energy market. Perovskite solar cells (PSCs) and thin film solar cells (TFSCs) achieved 23% and 22% power conversion efficiencies (PCEs) respectively. However, the PV industry still faces challenges like “high manufacturing costs” and “stability”. Among the strategies to overcome these challenges are substitution of the costly materials with cheaper, more abundant ingredients along with utilizing inexpensive deposition methods like printing rather than vacuum-based methods such as evaporation and sputtering. Carbon materials attract more attention in the solar cell research community for their... 

    Using of SnS2 Nanostructured Layer as an Electron Transport Layer in the Perovskite Solar Cells

    , Ph.D. Dissertation Sharif University of Technology Haghighi, Maryam (Author) ; Mahdavi, Mohammad (Supervisor) ; Taghavinia, Nima (Supervisor) ; Mohammadpour, Raheleh (Co-Supervisor)
    Abstract
    In this research, we focus on study and investigation of the role of Tin(IV) Sulfide (SnS2) nanostructured layer as electron transport layer in perovskite and chalcogenide thin film solar cells. For this purpose, SnS2 powder was prepared through hydro/solvo-thermal method, utilizing different ratios of water and ethanol as solvent and various sulfur sources (thioacetamide and thiourea). Afterwards, different solvents were investigated to achieve a stable ink (about one month) with uniform dispersion. After determining the appropriate ink and powder, thin films of SnS2 were prepared employing spin coating, spray pirolysis and laser pulsed deposition (PLD) methods and characterized. With each... 

    Fabrication of Nanostructure Cuprous Oxide Films for Photovoltaic Systems

    , Ph.D. Dissertation Sharif University of Technology Shooshtari, Leyla (Author) ; Iraji Zad, Azam (Supervisor) ; Mohammadpour, Raheleh (Supervisor)
    Abstract
    Metal oxide semiconductors are promising materials for photovoltaic systems, because they are chemically stable, almost non-toxic and abundant. These materials are cheap and have low cost fabrication process. Cu2O is the most popular metal oxide semiconductor to absorb light in Photovoltaic (PV) applications, and photocathode in the photoelectrochemical systems.In this project, thermal oxide and electrodeposition methods, both interesting and cheap, were applied for preparing Cu2O films. As inexpensive materials results in low-minority carrier diffusion length, we report on surface engineering of bulk Cu2O photocathode thorough employing nanorods of copper oxide with the average lengths of... 

    Fabrication and Optimization of Organic Inorganic Perovskite Solar Cells Using Vapor Phase Deposition

    , Ph.D. Dissertation Sharif University of Technology Sedighi, Rahime (Author) ; Taghavinia, Nima (Supervisor) ; Tajabadi, Fariba (Supervisor)
    Abstract
    In this research, we focus on study and fabrication of organic inorganic solar cells. We use and optimize various methods such as one-step spin-coating, two-step sequential deposition and vapor-assisted solution process (VASP), to prepare high quality perovskite films. One-step deposition is simplest method for deposition of perovskite films. Although perovskite deposition by this method is very simple, the control of uniformity and surface film morphology is difficult. Chlorine inclusion, optimization of annealing conditions, and a sequential solution-based deposition method have been demonstrated to increase film coverage and uniformity. Hence, we use sequential deposition method for... 

    Monolithic Solar Cells with Dye or Perovskite Light Absorbent

    , Ph.D. Dissertation Sharif University of Technology Behrouznejad, Fatemeh (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    According to Iran's proper location to take advantage of solar energy and the ability of nanostructured solar cells fabrication in the country, in this study, the manufacturing problems and complexities of nanostructured solar cells such as dye solar cells and perovskite-based solar cells are investigated. The chromium metal as an alternative to the transparent conductive substrates in order to reduce the manufacturing cost of dye solar cells (DSCs) and reducing series resistance is introduced in this study. In case of utilizing chromium as a substrate for photoanode, the thickness of CrxOy layer is controlled by depositing TiO2 compact layer and the efficiency of DSC is increased from 2.6%... 

    Luminescent Down Shifting of the Incident Spectrum to Enhance the Performance of Dye-Sensitized Solar Cell

    , Ph.D. Dissertation Sharif University of Technology Hosseini, Zahra (Author) ; Taghavinia , Nima (Supervisor) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Luminescence down shifting (LDS) of the incident spectrum is a practical strategy that helps to increase the light harvesting efficiency by manipulating the incident spectrum instead of interfering with the active material inside the cell. In this research, for a dye-sensitized solar cell with a near-infrared sensitizer, the photovoltaic performance was enhanced remarkably with a reflective luminescent down-shifting (R-LDS) layer. Different inorganic phosphors with different luminescent quantum efficiencies have been used as the down shifting materials to increase the light-harvesting efficiency of DSSCs sensitized with TT1 and SQ1 dyes. Four different structures were examined to find the... 

    Fabrication of Plasmonic Structures and Investigation of the Effect of Surface Plasmon Resonance on Dye Sensitized Solar Cell

    , Ph.D. Dissertation Sharif University of Technology Sharifi, Nafiseh (Author) ; Irajizad, Azam (Supervisor)
    Abstract
    Dye-sensitized solar cells (DSCs) are third generation of solar cells, which composed of a porous layer of wide band gap semiconductor such as TiO2, covered with a molecular dye that absorbs sunlight, and a counter electrode contacted by a liquid redox electrolyte. Photovoltaic performance is the collective measure of light harvesting, charge separation and charge collection efficiencies. Light harvesting has a significant role in improvement of photovoltaic performance. Molecular engineering of dyes to improve absorption spectrum or to have a broad absorption spectrum,andlight scattering layes are approaches for this porpuse. This research is focused on photon management in DSCs using... 

    Fabrication and Optimisation of Solid State Dye Sensitized Solar Cells Based on Nanostructured TiO2 and SnO2 Photoelectrodes

    , Ph.D. Dissertation Sharif University of Technology Sadoughi, Golnaz (Author) ; Iraji Zad, Azam (Supervisor) ; Taghavinia, Nima (Supervisor)
    Abstract
    Dye-sensitized solar cells were introduced by M. Gratzel in 1991. These solar cells have a power conversion efficiency of about 12% over the AM1.5 full sun. Traditionally, a liquid electrolyte redox system is used to regenerate the dye. Due to stability issues, a solid hole transport material has been employed to replace the liquid electrolyte as an attempt to create solid-state Dye-sensitized solar cell (ssDSC). Over past few years power conversion efficiency of ssDSCs has improved considerably and reached over 7%.
    Here, ss-DSCs based on TiO2 nanoparticles as photoelctrode and P3HT as hole transport material were fabricated and characterized. We used three different methods; dip... 

    Dye and Cadmium Based Quantum dot Sensitized Solar Cells Based on TiO2 Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Samadpour, Mahmoud (Author) ; Iraji Zad, Azam (Supervisor) ; Taghavinia, Nima (Supervisor)
    Abstract
    In this research we focus on fabrication and characterization of Dye and Cadmium based Quantum Dot Sensitized Solar Cells (QDSCs) based on TiO2 nanostructures. TiO2 nanorods were synthesized with a simple chemical method. TiO2 nanorods, TiO2 nanorod/TiO2 and ZnO nanoparticle composite structures were integrated as photoanode in dye sensitized solar cells (DSSCs). Incorporation of TiO2 nanoparticles into the bare nanorods increased the efficiency more than 45%. Monitoring electron transport properties of the cells, pointed out the crucial role of electronic structure of composite film components on the performance of cells. Suitable morphology of TiO2 nanorods, led us to use them, to make a... 

    Growth of Polymer/TiO2 Nanostructures by Layer-by-Layer Self Assembly Method as Electrodes of Photoelectrochemical Cells

    , Ph.D. Dissertation Sharif University of Technology Rahman, Masoud (Author) ; Taghavinia, Nima (Supervisor) ; Shahrokhian, Saeed (Co-Advisor)
    Abstract
    Dye sensitized solar cells (DSCs) are among the 3rd generation solar cells which their mechanism of light absorption is similar to chlorophyll in green leafs and is based on photo-excitation of dyes. The electron-hole pairs of photo-excited dye separate at the interface of mesoporous semiconductor-dye-electrolyte. One of the approaches to increase the light path length and therefore the light harvesting efficiency in DSC is the addition of light scatterers inside the mesoporous semiconductor (photoanode).In this research, nanoparticulated hollow TiO2 fibers are introduced as novel light scatterers in DSCs with simultaneous light scattering, light trapping and high surface area. Light... 

    Visible Light Active TiO2 Nanostructured Fibers for Decomposition of Pollutants in Petroleum Industry and Dye/Semiconductor Sensitized Solar Cells

    , Ph.D. Dissertation Sharif University of Technology Ghadiri, Elham (Author) ; Taghavinia, Nima (Supervisor) ; Aghabozorg, Hamid Reza (Supervisor) ; Iraji Zad, Azam (Co-Advisor)

    Fabrication and Photoelectrochemical Characterization of Ordered Nanotube Arrays of TiO2 for Solar Cell Application

    , Ph.D. Dissertation Sharif University of Technology Mohammadpour, Raheleh (Author) ; Iraji zad, Aazam (Supervisor) ; Dolati, Abolghasem (Supervisor) ; Taghavinia, Neima (Co-Advisor)
    Abstract
    In this research we focus on study and fabrication of ordered nanotube arrays of titanium oxide and their applications in photoelectrochemical cell. Nanotubular films of titanium oxide have been fabricated using anodization method. Short-length nanotubes, less than one micrometer, have been synthesized in aqueous electrolyte containing deionized water, hydrofluoric acid and phosphoric acid. To get Micron-length nanotubes, we have employed organic electrolyte containing ethylene glycol, deionized water and fluoride ammonium. After fabrication, the photo-catalytic activity of nanotubular structures was evaluated by measuring the rate of degradation of in methylene blue aqueous solution. The...