Loading...
Search for: vossoughi--manouchehr
0.006 seconds
Total 47 records

    Bioregeneration of Granular activated carbon (GAC) contaminated with phenolic compounds

    , M.Sc. Thesis Sharif University of Technology Ahangar, Ata Ollah (Author) ; Vossoughi, Manouchehr (Supervisor) ; Borghei, Mehdi (Supervisor)
    Abstract
    This project surveys bioregeneration of granular activated carbons contaminated with phenolic compounds. To carry out this survey, the procedure of phenol absorption on the surface of activated carbon was studied and their adsorption isotherms were calculated. In the first step, newly activated carbon was contaminated with phenol solution and optimum amount of carbon in phenol elimination was 0.5g. Then, the effect of time contact on phenol elimination was studied and eventually 1 hour of time contact was determined as the equilibrium time of phenol adsorption. In the second step, kinetics of adsorption of phenol and different stages of adsorption were studied. The results of this study... 

    Effect of Bioglass Particle Size and Titania Morphology on the Bioactivity and Kinetics of Tissue Growth in Three-Dimensional Poly(ɛ-Caprolactone) Scaffolds with Controlled Pore Structure Produced by 3D-Printing Process

    , Ph.D. Dissertation Sharif University of Technology Tamjid Shabestary, Elnaz (Author) ; Bagheri, Reza (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Simchi, Abdolreza (Co-Advisor)
    Abstract
    Polycaprolactone (PCL) scaffolds and its composites containing bioactive glass particles (45S5) and TiO2 nanostructures with pre-defined and controlled external and internal architecture were prepared via an indirect three-dimensional (3D) printing process. The scaffolds had an interconnected structure with macro- (400-500 μm) and micro- (~25 μm) pores. Bioactivity, mechanical behavior and kinetics of tissue growth in 3D scaffolds were studied. The size effect of biogactive glass particles (6 μm, 250 nm, <100 nm) and morphology of titania nanostructures (spherical, tube, leaf-like, and flower-like particles) were elaborated. The biogactive glass particles with different sizes were prepared... 

    Experimental Study and Optimization of Bioremediation of PAHs by Newly Isolated Thermophilic Filamentous Fungi in Slurry Bioreactor

    , M.Sc. Thesis Sharif University of Technology Sarayloo, Ehsan (Author) ; Vossoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor)
    Abstract
    Sustainable development requires the development and promotion of environmental management and a constant search for green technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. In this work we investigated the ability of four previously isolated fungi, BBRC 9057, BBRC 20020, BBRC 9058 and BBRC 9002, in degradation of polycyclic (PAHs) and the effect of UV irritation on fungi cell growth and degradation of PAHs. Also we studied the degradation of anthracene by thermophilic filamentous fungi in liquid and soil slurry bioreactor. Cell growth and anthracene degradation ability of BBRC 9057 increased 6.51 and 1.82 times rather... 

    Investigation of Application of Nano-Photocatalytic Degradation for Industrial Wastewater Treatmen

    , M.Sc. Thesis Sharif University of Technology Falahati, Mohammad (Author) ; Roosta Azad, Reza (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
    Abstract
    The main objective of this project is the deposition of photo-catalysts on cement and concrete blocks with an emphasis on commercialization. We started with an extensive study of common methods introduced in previous literature, and conclude with a number of suggestions for industrialization. First, slurry and sol-gel deposition of the photo-catalysts on blocks of type 2 commercial cement which is one of the most used materials in construction of buildings and waste-water treatment plants has been examined to reach a method of sample formation. Due to the simplicity of common methods and low quality of formed samples (less than 5 percent aging efficiency), the obtained experience was used to... 

    Rapid Determination of Histamine by an Enzyme-based Microfluidic Biosensor

    , M.Sc. Thesis Sharif University of Technology Moradi, Mohammad Reza (Author) ; Vossoughi, Manouchehr (Supervisor) ; Shamloo, Amir (Supervisor)
    Abstract
    Design, simulation, optimization and manufacturing of an enzyme-based microfluidic biosensor has been carried out during this research to measure histamine concentration in a sample. The designed biosensor is composed of a micro-bioreactor to degrade histamine and yield hydrogen peroxide, and a chemical reactor to measure the amount of hydrogen peroxide, using chemiluminescence methods. The geometry of the bioreactor and chemical reactor is developed through comparison and optimization of several different geometries. In theory, the designed sensor can determine histamine concentration in a range of 10M to 1mM under one minute, with a maximum error of 5%. Designed biosensor is built using... 

    Design and Fabrication of Biodegradable Polymeric Scaffold with nano-Bioglass for Osteoblast cell Growth

    , M.Sc. Thesis Sharif University of Technology Razaghzadeh Bidgoli, Mina (Author) ; Vossoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor) ; Tamjid Shabesteri, Elnaz (Co-Advisor)
    Abstract
    Treatment of critical-size bone defects caused by sport injuries, accidents, trauma, infection, and osteoporosis remains a major clinical challenge. In order to repair or regenerate large bone defects, bioactive three-dimensional scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced mass transport and diffusion. Many studies reported that macropore diameters greater than 500 µm can lead to vascularized bone tissue. In this study, a hierarchically porous composite scaffold was prepared. Hierarchically porous silk fibroin- bioactive glass composite and fibroin scaffold were fabricated with controlled architecture and interconnected structure with... 

    Labratoary Studies of Ozonation Pretreatment for Anaerobic Digestion of Waste Thickened Active Sludge

    , M.Sc. Thesis Sharif University of Technology Hodaei Asfahani, Mahdi (Author) ; Vossoughi, Manouchehr (Supervisor) ; Ghasemi, Shahnaz (Supervisor)
    Abstract
    The best method for stabilizing sludge is anaerobic digestion, In addition to reducing the amount of volatile solids; it produces biogas, which can be considered as a sustainable energy source for wastewater treatment plants. However, the most important factor limiting the process of digestion is the sludge hydrolysis, the best way to increase the speed of hydrolysis is to pre-treatment the sludge before entering the digester; One of the most effective pretreatment methods is pre-treatment by ozone gas, This gas, which is highly unstable, quickly reacts with the wall of the bacterial cell and oxidizes it due to its high oxidizing properties And accelerates the process of sludge hydrolysis.... 

    Theoretical and Experimental Study of the Partitioning of Cephalexin in Aqueous Two Phase System of Polymer-Salt

    , M.Sc. Thesis Sharif University of Technology Khederlou, Khadijeh (Author) ; Teghikhani, Vahid (Supervisor) ; Ghotbi, Cirouc (Supervisor) ; vossoughi, Manouchehr (Supervisor)
    Abstract
    The aqueous two phase systems provide a suitable environment for separation and purification of biological compounds. Because both phases are water rich and biomolecule remain active in them. In this work, the partition coefficients of Cephalexin in polymer-salt aqueous two-phase systems have been measured. The experimental results were obtained at three various temperatures (37.2, 34.2 and 28.2) C and in each temperature, two salt (K2HPO4, Na3Cit) and two polymer with different molecular weight (4000, 10000) are investigated. According to the two phase analysis, the effect of different factors on tie line of systems is studied. It is observed that with increasing the PEG molecular weight,... 

    Experimental Study and Thermodynamic Modeling of Process Partitioning of Penicillin in Polymer-Salt Aqueous Two-Phase Systems

    , Ph.D. Dissertation Sharif University of Technology Pazuki, Gholamreza (Author) ; Taghikhani, Vahid (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
    Abstract
    In this research, the partitioning of Penicillin G-Acylase in aqueous two-phase systems (ATPS) containing poly ethylene glycol (PEG) 20000 or 35000 and potassium di-hydrogen phosphate (KH2PO4) or sodium citrate (C6H5Na3O7.5H2O) is measured at three temperature (301.2, 307.2 and 310.2) K. The effects of temperature, polymer molecular weight, polymer and salt concentrations on partitioning of Penicillin G in the aqueous two-phase systems are studied. The experimental data showed that composition of salt has a large effect on partitioning of Penicillin G in ATPS and temperature of system has small effect on the partitioning. The modified local composition model was used to obtain the activity... 

    Separation and Purification of Industrial Proteins by Chromatography and Aqueous two Phase System

    , M.Sc. Thesis Sharif University of Technology Yavari, Milad (Author) ; Vossoughi, Manouchehr (Supervisor) ; Seifkordi, Ali Akbar (Supervisor)
    Abstract
    Separation of biomolecules such as enzymes is the most important part of biotechnology process which 10-90 % of costs is for separation and purification. There are several methods for purification of bio materials and one of them is chromatography which use in enzyme purification but this method have several problem such as cost ,time consuming and scale up Because of this a suitable alternative demands for industrial separation. An alternative is aqueous two-phase systems (ATPS). In this project was studied about partial purification of alkaline protease produced by Bacillus licheniformis ATCC 21424 in aqueous two-phase system and comparison with chromatography method. an aqueous two-phase... 

    Evaluation of Process Partitioning of Enzyme in Polymer-Salt Aqueous Two-PHase Systems

    , M.Sc. Thesis Sharif University of Technology Kamankesh, Amin (Author) ; Alamzadeh, Iran (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Pazuki, Gholamreza (Supervisor)
    Abstract
    In this research, the amount of partitioning Invertase to be evaluated in nine systems, these systems contain Peg 2000,Peg 4000 & Peg 6000 with three different salt.In first, Binodal curve for nine systems to be drown by cloudy point method, then five point be selected in each system such as sample feed. Invertase in every systems to be solved in constant weight fraction. The analysis of every phasesto be achieved by Merchuk method. For correlation data of this method to be used by Othmer-Tobias method and then using equation Mrchvk ensure the accuracy of phase analysis , analysis of the results obtained with the UV method was studied.Accuracy of UV analysis was studied by using lattice... 

    Experimental Study of Using Cellulosic Compounds in Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Golizadeh, Mortaza (Author) ; Vossoughi, Manouchehr (Supervisor) ; Karimi, Afzal (Supervisor) ; Faghihi, Faezeh (Co-Supervisor)
    Abstract
    Fabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate, cellulose, carboxymethyl cellulose and quaternary ammonium cationic cellulose for biomedical applications have been reported in this research. We describe preparation of cellulosic nanofibers through the electrospinning following deacetylation cellulose acetate. Moreover, surface modification of electrospun cellulose nanofibers is carried out to obtain carboxymethyl cellulose and quaternized cellulose nanofibers, respectively. At last, the structural, morphological, mechanical, swelling, wettability and the cell culture properties of the scaffolds were analyzed and... 

    Design and Optimization of Microbial Fuel Cell (MFC) for Organic Pollution

    , M.Sc. Thesis Sharif University of Technology Nabavian, Alborz (Author) ; Vossoughi, Manouchehr (Supervisor) ; Seif Kordi, Ali Akbar (Supervisor)
    Abstract
    A Microbial fuel cell is a Bioreactor in which chemical bands are broken and their energy convert to electricity by bio-catalysts such as microorganisms and enzymes. Depletion of energy resources encouraged researchers to investigate microbial fuel cell as a power bio-resource. MFCs produce electricity or hydrogen without any net carbon emission. Nowadays, real applications of microbial fuel cells are limited because their power density level is very low (about 1000 mW/m2). Many research projects are running to modify MFCs operation and optimize its costs. The most important application of MFCs is electricity production, hydrogen production, waste water treatment and BOD5 biosensor. In this... 

    Degradation of Model Textile Dyes in Wastewater using Visible-Light Active Photocatalysts

    , M.Sc. Thesis Sharif University of Technology Heidarpour Chakoli, Hamed (Author) ; Soltanieh, Mohammad (Supervisor) ; Vossoughi, Manouchehr (Co-Supervisor) ; Padervand, Mohsen (Co-Supervisor)
    Abstract
    Textile dyes are a major category of organic pollutants and release of them in the environment causes serious problems. Among the most commonly used methods for colored wastewater, advanced oxidation processes, especially the photocatalytic process, are rapidly developing as a new and effective solution. However, there is still a need for high-level photocatalytic activity and improvement of this process to increase removal efficiency. In this study, we have tried to provide a higher performance for color removal using carbon nitride photocatalyst. Accordingly, two approaches have been proposed to improve the removal of rhodamine b, as one of the common dyes in the textile industries. The... 

    Experimental Removal of Aromatic Hydrocarbons by Thermophilic Bacteria in a Fixed Bed Reactor

    , M.Sc. Thesis Sharif University of Technology Bokaee, Shima (Author) ; Borghei, Mehdi (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Zeinali, Majid (Supervisor)
    Abstract
    According to the environmental lows and standards, wastewater of petroleum industries such as refineries and petrochemical that include many petroleum compounds like aromatic and aliphatic hydrocarbons, must be treated up to desirable limit, before entering the collecting network. Using microorganisms is one of the fundamental ways of biodegradation of these polluted compounds. Since phenolic compounds are the main components of raw petroleum, strains that are capable of tolerating phenol and usage of this poisonous hydrocarbon are specifically important. Therefore, in this study the potentiality of the indigenous thermophilic bacterium Nocardia otitidiscaviarum strain TSH1, for degradation... 

    Design and Implementation of Near Field Excitation System for Spectroscopy of Biological Species

    , Ph.D. Dissertation Sharif University of Technology Sasanpour, Pezhman (Author) ; Rashidian, Bizhan (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Shahrokhian, Saeed (Co-Advisor)
    Abstract
    The main goal of this project is analysis, design and implementation of scanning near field optical system for detection of biological species. The activities fall in two main category. Theoretical and experimental. In theoretical part, after studying different models describing near field interaction, we have developed software for computationally analysis of nonlinear interaction of light with nanostructures, considering third order nonlinear susceptibility and dispersion behavior of permittivity for metallic nanostructures. The software implements three dimensional finite difference time domain (FDTD) method for analysis of interaction of electromagnetic wave with matter. In developed... 

    Experimental Study of the β-CD-g-PG Hybrid Nanostructure On Phase Solubilityof Hydrophobic Drug

    , M.Sc. Thesis Sharif University of Technology Asadi, Farshid (Author) ; Saifkordi, Aliakbar (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
    Abstract
    Some widely used drugs such as paclitaxel (PTX) are poorly water soluble. The clinical use of PTX with solubilizer causes side effects. These problems limited its application in treatments. In this work has been studied the effect of β-CD-g-PG (HPCD) hybrid nanomaterials, conjugated PG branches onto β-CD core, on the water solubility of PTX. First HPCD has been synthesized. Then the inclusion complex of PTX with HPCD was prepared. The inclusion complex efficiency for PTX:HPCD complex in 1:25 mole ratio was 87%. Then solubility of PTX with HPCD in water has been determined, showing Ap type phase solubility diagram. Then stability constants were calculated. The first order and second order... 

    Design and Synthesis of a Novel Nanomaterial as a Carrier of a Hydrophobe drug in an Inclusion Complex based on Cychlodextrin

    , M.Sc. Thesis Sharif University of Technology Gholami, Mahsa (Author) ; Vossoughi, Manouchehr (Supervisor) ; Kazemi, Akhtarolmolouk (Supervisor)
    Abstract
    Paclitaxel is used as a drug against breast and ovarian cancers. Although paclitaxel has high biologic activity, it has very pour solubility in water like some other drugs. Since drugs should be solved in water to be absorbed by the body, for absorb enhancement, we should use carriers which includes both polar and non polar sites. eta-Cyclodextrin which has this feature is capable for producing inclusion complex in its hydrophobic pores with non polar materials. In this project by adding polymeric polyacrylamide branches on beta-Cyclodextrin, polymeric nano structure has been developed to enhance water solubility in comparison with pure beta-Cyclodextrin. Study on producing polymeric nano... 

    Designing and Fabrication of Microfluidic Biosensor by DNA-Directed Immobilization

    , Ph.D. Dissertation Sharif University of Technology Esmaeili, Elaheh (Author) ; Vossoughi, Manouchehr (Supervisor) ; Soleimani, Masoud (Supervisor) ; Shamloo, Amir (Supervisor)
    Abstract
    The present study is aimed at the development of a novel approach based on the magnetically improvement of DNA-directed immobilization to prepare a highly efficient sensor for prostate diagnosis. The novelty of this work is in the use of antibody conjugated magnetic nanoparticles via DDI. DNA-modified magnetic nanoparticles are added in solution to capture DNA-conjugated, fluorescently-labeled immunocomplexes formed in solution free of steric constraints. The DDI-based nanoconstructs are then concentrated and immobilized using a magnetic field. Compared to a process in which the immunocomplex directly forms on the sensing surface, the proposed approach provides higher mass transfer and lower... 

    Designing Electrophysiological Characterization System of Biological Cells Based on the Use of Nanostructured Electrodes

    , Ph.D. Dissertation Sharif University of Technology Vafaiee, Mohadeseh (Author) ; Vossoughi, Manouchehr (Supervisor) ; Sasanpour, Pezhman (Supervisor) ; Mohammadpour, Raheleh (Supervisor)
    Abstract
    In the last half century, the recording of the electrophysiological activities of the neurons has been one of the most effective methods for neuroscience development. One of the techniques used to record the activity of the nerve cells is the use of multi-electrode arrays (MEAs). Current MEAs still face limitations such as low signal-to-noise ratio (SNR) and low spatial resolution. There is a need to develop arrays that are smaller in size and have less impedance to achieve better spatial resolution and lower noise levels. The main focus of this research is on the designing and fabrication of multi-electrode arrays and improvement of their properties using nanostructures and conductive...