Loading...
Search for: saidi--m--h
0.012 seconds
Total 225 records

    Experimental and theoretical investigations on spray characteristics of bio-ethanol blends using a direct injection system

    , Article Scientia Iranica ; Volume 24, Issue 1 , 2017 , Pages 237-248 ; 10263098 (ISSN) Ghahremani, A. R ; Jafari, M ; Ahari, M ; Saidi, M. H ; Hajinezhad, A ; Mozafari, A. A ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    In the present work, the spray characteristics of bio-ethanol and its blends have been experimentally and theoretically investigated. To have a comprehensive study, the effects of ambient condition and injection pressure on the spray of different blends have been considered. Macroscopic and microscopic characteristics of spray such as tip penetration length, cone angle, projected area, volume, Sauter Mean Diameter (SMD), and Ohnesorge number are investigated precisely. Besides, air entrainment and atomization analyses have been carried out to improve mixture formation process. Using curve fitting and least squares method, theoretical correlations have been suggested in such a way to predict... 

    Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system

    , Article Thermal Science ; Volume 21 , 2017 , Pages 475-488 ; 03549836 (ISSN) Ghahremani, A ; Ahari, M ; Jafari, M ; Saidi, M. H ; Hajinezhad, A ; Mozafari, A ; Sharif University of Technology
    Abstract
    One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. A new modified bio-ethanol is produced to be substituted by fossil fuels in gasoline direct injection engines. The key advantages of modified bio-ethanol fuel as an alternative fuel are higher octane number and oxygen content, a long-chain hydro-carbon fuel, and lower emissions compared to fossil fuels. In the present study spray properties of a modified bio-ethanol and its atomization behaviors have been studied experimentally and theoretically. Based on atomization physics of droplets dimensional analysis has been performed to develop a new... 

    Spray characteristics and atomization behavior of bio-diesel (Norouzak) and diesel fuel blends

    , Article Particulate Science and Technology ; Volume 36, Issue 3 , 2018 , Pages 270-281 ; 02726351 (ISSN) Ghahremani, A. R ; Jafari, M ; Ahari, M ; Saidi, M. H ; Hajinezhad, A ; Mozaffari, A. A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Norouzak oil seeds that are the source of bio-diesel (Norouzak) fuel grow mostly in Gonabad and Kashmar located in Khorasan, north east of Iran. Spray characteristics of Norouzak bio-diesel have been experimentally and theoretically studied in this work. Norouzak fuel is added to the conventional diesel fuel, and mixture formations of several blends have been investigated and compared with each other. Moreover, by varying ambient and injection conditions, behaviors of spray of different blends have been explored. Microscopic and macroscopic properties of spray such as Sauter Mean Diameter (SMD), Ohnesorge number, spray tip penetration, spray cone angle, spray projected area and volume have... 

    A new approach to the analytical and numerical solution of the bidirectional vortex flow

    , Article 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, 8 July 2007 through 11 July 2007 ; Volume 5 , 2007 , Pages 4856-4869 ; 1563479036 (ISBN); 9781563479038 (ISBN) Jamaly, S. M ; Saidi, M. H ; Ghafourian, A ; Mozafari, A. A ; Dehghani, S. R ; Sharif University of Technology
    2007
    Abstract
    The solution for bulk fluid motion of a bidirectional coaxial vortex for application in vortex engine has been derived. The vortex engine is a novel combustion chamber in which swirl motion of reactants are used to maintain the chamber walls cool. The flow field has been considered both analytically and numerically. The model is based on incompressible, steady, axisymmetric, and non-reactive flow conditions. The governing PDEs are reduced to a system of nonlinear ODEs and then, by a coordinate transformation, their singularity has been relaxed. Solution domain has been decomposed into the inner viscous and outer inviscid regions, then, the velocity and pressure fields are obtained... 

    Pressure variation due to sudden rise of water head at water inlets

    , Article 31st IAHR Congress 2005: Water Engineering for the Future, Choices and Challenges, 11 September 2005 through 16 September 2005 ; 2005 , Pages 2797-2806 ; 8987898245 (ISBN); 9788987898247 (ISBN) Kabiri-Samani, A ; Borghei, S.M ; Saidi, M. H ; Byong-Ho J ; Sang I. L ; Won S. I ; Gye-Woon C ; Sharif University of Technology
    Korea Water Resources Association  2005
    Abstract
    An analytical/numerical model based on the assumption of rigid incompressible water column and compressible air bubble, is derived to simulate the pressure fluctuations, void fraction, air/water flow rate, water velocity in a closed conduit and water depth at upper reservoir due to formation of unstable slug flow. It is a comprehensive model which can generate different hydraulic situations of instability in a closed conduit based on hydraulic approach. The boundary conditions are the system of algebraic or/and simple differential equations. The steady solution of the governing differential equations is generally performed as the initial data. The frequency of pressure fluctuation and...