Loading...
Search for: bone
0.005 seconds
Total 206 records

    A 3-legged parallel robot for long bone fracture alignment

    , Article ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017, 6 August 2017 through 9 August 2017 ; Volume 3 , 2017 ; 9780791858158 (ISBN) Abedinnasab, M. H ; Farahmand, F ; Gallardo Alvarado, J ; Computers and Information in Engineering Division; Design Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    The reduction of long bone fractures is traditionally an invasive procedure with drawbacks of intense force, soft tissue damage, and, both, rotational and longitudinal malalignment. To combat these drawbacks, we applied a novel, wide open, threelegged, 6-DOF parallel robot, to the current surgical procedure. This platform will balance the accuracy, payload, and workspace for the surgeon, resulting in more efficient, successful surgeries. The experimental tests on a phantom reveal that the mechanism is well capable of applying the desired reduction steps against the large muscular payloads with high accuracy. © 2017 ASME  

    Green composites in bone tissue engineering

    , Article Emergent Materials ; 2021 ; 25225731 (ISSN) Jouyandeh, M ; Vahabi, H ; Rabiee, N ; Rabiee, M ; Bagherzadeh, M ; Saeb, M. R ; Sharif University of Technology
    Springer Nature  2021
    Abstract
    Natural and biodegradable polymers are of particular interest as green sources with low-cost and environmentally friendly features, and have been widely used for polymer composite development. The term “Green Composites” refers to polymer/filler systems in which polymer, filler, or sometimes both components are green in view of sources from which they are yielded or their biodegradability. Natural fibers obtained from plants, animals, and/or geological processes are a big class of green sources widely applied in green composite development. There has also been continued research on recycling of green composite as well as developing hybrid systems for advanced applications. In view of their... 

    Deep learning in periodontology and oral implantology: A scoping review

    , Article Journal of Periodontal Research ; Volume 57, Issue 5 , 2022 , Pages 942-951 ; 00223484 (ISSN) Mohammad Rahimi, H ; Motamedian, S. R ; Pirayesh, Z ; Haiat, A ; Zahedrozegar, S ; Mahmoudinia, E ; Rohban, M. H ; Krois, J ; Lee, J. H ; Schwendicke, F ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Deep learning (DL) has been employed for a wide range of tasks in dentistry. We aimed to systematically review studies employing DL for periodontal and implantological purposes. A systematic electronic search was conducted on four databases (Medline via PubMed, Google Scholar, Scopus, and Embase) and a repository (ArXiv) for publications after 2010, without any limitation on language. In the present review, we included studies that reported deep learning models' performance on periodontal or oral implantological tasks. Given the heterogeneities in the included studies, no meta-analysis was performed. The risk of bias was assessed using the QUADAS-2 tool. We included 47 studies: focusing on... 

    Evaluation of Mechanical and Structural Properties of Titanium Bone Scaffolds

    , M.Sc. Thesis Sharif University of Technology Naddaf Dezfuli, Sina (Author) ; Sadrnezhad, Khatiboleslam (Supervisor) ; Shokrgozaar, Mohammad Ali (Co-Supervisor)
    Abstract
    Interconnected–pore titanium scaffolds were fabricated by sintering of compressed mixture of TiH1.924 and urea or NaCl. Urea was removed by evaporation during sintering and NaCl was removed with water. TiH1.924 was used to enhance gas evolution for perpetuation of foam formation. Morphological studies of the spacer-removed scaffolds showed that the spacer shapes were replicated to the pores. Minimization of stress concentration at walls of the pores was, hence, helped by utilization of the spacers with spherical particles. The scaffolds having relative densities of 0.34 to 0.65 consisted pores of 200 to 600 μm diameter, compression strengths of 51 to 260 MPa, Young’s modulus of 6.3 to 22.66... 

    Synthesis of Hydroxyapatite Nanoparticles through Sol-Gel Method and Fabrication of Chitosan/Hydroxyapatite Scaffold for Bone Replacement Tissue

    , M.Sc. Thesis Sharif University of Technology Behboodi, Panteha (Author) ; Nemati, Ali (Supervisor) ; Faghihi Sani, Mohammad Ali (Co-Supervisor)
    Abstract
    Hydroxyapatite is the most substantial inorganic component of bone tissue which displays great biocompability and bioactivity. Nevertheless, its mechanical properties is not appropriate for a bone substitiues. Therefore, it is used to improve the mechanical properties of polymer matrix composite scaffolds. In the present work chitosan as a polymeric matrix was employed to fabricate hydroxyapatite- chitosan biocomposite scaffolds. Sol-Gel method was employed to synthesize hydroxyapatite nano particles. Porous scaffolds were fabricated via freeze-drying by introducing two different cross linkers, Glutaraldehyde and Sodium Tripolyphosphate. Mechanical (compressive strength), biocampability and... 

    Chitosan/Gelatin/Mg Substituted Hydroxyapatite Nano Composite Scaffold for Bone Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Azamian, Fariba (Author) ; Mohammadi, Mohammad Reza (Supervisor) ; Fathi, Mohammad Hossein (Co-Advisor)
    Abstract
    The present study is work on fabrication and characterization of a chitosan/ gelatin/ Mg substituted hydroxyapatite nano composite scaffold for bone tissue engineering. At the first step pure and Mg-substituted hydroxyapatite (HA) (Ca10-xMgx(PO4) 6OH2) nano-hexagonal rods with 14–45 nmdiameter.for this, calcium nitrate, magnesium phosphate hydrate and potassium dihydrogenphosphate were used as precursors for Ca, Mg, and P, respectively. Calculated amounts of magnesium ions (Mg+2) especially from 0 to 8% (molar ratio) were incorporated as substituted into the calcium sol solution. Deionized water was used as a diluting media for HA sol preparation and ammonia was used to adjust the pH= 9.... 

    Preparation and Characterization of Hydroxyapatite Nanostructures Using Natural Resources for Bone Scaffold Applications

    , M.Sc. Thesis Sharif University of Technology Gheysari, Hengameh (Author) ; Simchi, Abdolreza (Supervisor) ; Askari, Masoud (Supervisor)
    Abstract
    This investigation presents synthesis and characterization of pure and monophasic hydroxyapatite (Ca10(PO4)6(OH)2; HA) Nanostructures prepared by coral and oyster shell powders heated at 800 oC for 8 h as precursor via precipitation method. The morphology of HA nanostructures was controlled in the presence of various surfactants such as SDS, CTAB and PVP. The HA Nanorods synthesized by SDS were applied to fabricate bone scaffolds. Particle sizes of the HA Nanoparticles were about 20-30 nm. Pours three-dimensional HA/Ge/CMC scaffolds cross-linked by citric and oxalic acids were synthesized. In order to increase the pore size of the scaffolds, NaCl with medium (180-250 µm) and large (420-500... 

    Tissue growth into three‐dimensional composite scaffolds with controlled micro‐features and nanotopographical surfaces [electronic resource]

    , Article Journal of Biomedical Materials Research Part A ; October 2013, Vol. 101, Issue 10, Pages 2796-2807 Tamjid, E. (Elnaz) ; Simchi, A. (Abdolreza) ; Dunlop, John W. C ; Fratzl, Peter ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were... 

    Biomechanical comparison between bashti bone plug technique and biodegradable screw for fixation of grafts in ligament surgery

    , Article Archives of Bone and Joint Surgery ; Volume 3, Issue 1 , January , 2015 , Pages 29-34 ; 23454644 (ISSN) Bashti, K ; Tahmasebi, M. N ; Kaseb, H ; Farahmand, F ; Akbar, M ; Mobini, A ; Sharif University of Technology
    Mashhad University of Medical Sciences  2015
    Abstract
    Background: Ligament reconstruction is a common procedure in orthopedic surgery. Although several popular techniques are currently in use, new methods are proposed for secure fixation of the tendon graft into the bone tunnel. Purposes: We sought to introduce our new technique of Bashti bone plug for fixation of soft tissue graft in anterior cruciate ligament (ACL) reconstruction and to compare its biomechanical features with conventional absorbable interference screw technique in a bovine model. Methods: Twenty pairs of bovine knees were harvested after death. Soft tissue was removed and the Achilles tendon was harvested to be used as an ACL graft. It was secured into the bone tunnel on the... 

    A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 897-912 ; 09284931 (ISSN) Tajbakhsh, S ; Hajiali, F ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites... 

    Cellulose acetate/magnetic graphene nanofiber in enhanced human mesenchymal stem cells osteogenic differentiation under alternative current magnetic field

    , Article SPIN ; Volume 9, Issue 2 , 2019 ; 20103247 (ISSN) Hatamie, S ; Mohamadyar Toupkanlou, F ; Mirzaei, S ; Ahadian, M. M ; Hosseinzadeh, S ; Soleimani, M ; Sheu, W. J ; Wei, Z. H ; Hsieh, T. F ; Chang, W. C ; Wang, C. L ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    The three-dimensional (3D) nano scaffold of the cellulose acetate (CA) containing graphene/cobalt nanocomposite (0.1wt.%) was fabricated via electrospinning technique, and its impact on bone regeneration was investigated. Through this aim, bone marrow mesenchymal stem cells are cultured on the CA, and graphene/cobalt (rGO/Co)/CA nanocomposite scaffold surfaces and the samples are treated under low frequency alternative magnetic field (75Hz). The scaffolds are characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal studies (TG/DSC). The proliferation behavior of stem cells on CA, and rGO/Co/CA nano scaffolds are studied by MTT assay, show their... 

    CaTiO3/α-TCP coatings on CP-Ti prepared via electrospinning and pulsed laser treatment for in-vitro bone tissue engineering

    , Article Surface and Coatings Technology ; Volume 401 , 2020 Yadi, M ; Esfahani, H ; Sheikhi, M ; Mohammadi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the in-vitro bone regeneration ability of commercial pure titanium (CP-Ti) surface modified via electrospun polyvinylidene/hydroxyapatite (PVP/HA) masking and subsequent Nd-YAG pulsed laser treatment was investigated. The ratio of HA to PVP played a significant role in achieving a perfect homogenous mask on the CP-Ti. In the laser treatment process, the parameter of area scanning speed (ASS) had an important influence on the final surface morphology. A favorable range was defined for this parameter where these two conditions were satisfied: no PVP remaining and no severe substrate melting. Within a favorable range of ASS, as decreasing ASS exchanged the surface structure from... 

    Evaluation of differentiation quality of several differentiation inducers of bone marrow-derived mesenchymal stem cells to nerve cells by as-sessing expression of beta-tubulin 3 marker: A systematic review

    , Article Current Stem Cell Research and Therapy ; Volume 16, Issue 8 , 2021 , Pages 994-1004 ; 1574888X (ISSN) Karami Fath, M ; Zahedi, F ; Hashemi, Z. S ; Khalili, S ; Sharif University of Technology
    Bentham Science Publishers  2021
    Abstract
    Neurological diseases have different etiological causes. Contemporary, developing an ef-fective treatment for these diseases is an ongoing challenge. Cell therapy is recognized as one of the promising solutions for the treatment of these diseases. Amongst various types of stem cells, bone marrow-derived mesenchymal stem cells (BM-MSC) are known to be the most widely used stem cells. These cells are endowed with appealing properties such as the ability to differentiate into other cell types, including the muscle, liver, glial, and nerve cells. In this review study, we have systematically evaluated the ability of a variety of chemical compounds used in the last ten years to differentiate... 

    The effect of pore morphology and agarose coating on mechanical properties of tricalcium phosphate scaffolds

    , Article International Journal of Applied Ceramic Technology ; Volume 19, Issue 5 , 2022 , Pages 2713-2722 ; 1546542X (ISSN) Gorgin Karaji, Z ; Bagheri, R ; Amirkhani, S ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Three-dimensional biocompatible porous structures can be fabricated using different methods. However, the biological and mechanical behaviors of scaffolds are the center of focus in bone tissue engineering. In this study, tricalcium phosphate scaffolds with similar porosity contents but different pore morphologies were fabricated using two different techniques, namely, the replica method and the pore-forming agent method. The samples fabricated using the pore-forming agent showed more than two times higher compressive and bending strengths and more than three times higher compressive moduli. Furthermore, a thin layer of agarose coating improved the compressive and bending strength of both... 

    Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 15, Issue 8 , 2012 , Pages 835-844 ; 10255842 (ISSN) Bahari, M. K ; Farahmand, F ; Rouhi, G ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When... 

    Early post-operative performance of an anatomically designed hybrid thread interference screw for ACL reconstruction: A comparative study

    , Article Journal of Biomechanics ; Volume 135 , 2022 ; 00219290 (ISSN) Daneshvarhashjin, N ; Chizari, M ; Javad Mortazavi, S. M ; Rouhi, G ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Although the anterior cruciate ligament (ACL) reconstruction using interference screw is a well-accepted surgical procedure, patients still suffer graft failure in the initial rehabilitation phase. Graft fixation stability of a newly designed anatomical hybrid thread tapered interference screw (AHTTIS) was compared with a conventional standard one (CSIS) by conducting in-vitro mechanical tests. According to the CSIS manufacturer's instruction, eight tapered bone tunnels, matching AHTTIS geometry, and eight straight cylindrical tunnels were drilled in artificial bone blocks. Bovine tendon grafts were fixed using AHTTIS and CSIS in their corresponding bone tunnels. Each graft was subjected to... 

    Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure

    , Article Journal of Biomechanics ; Volume 42, Issue 10 , 2009 , Pages 1560-1565 ; 00219290 (ISSN) Ghanbari, J ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone... 

    Effects of Using Sheath on Fixation Strength of Bashti Bone Plug Technique (BBPT) in an Anterior Cruciate Ligament (ACL) Reconstruction

    , M.Sc. Thesis Sharif University of Technology Borjali, Amir Hossein (Author) ; Farrahi, Gholamhossein (Supervisor) ; Chizari, Mahmoud (Supervisor)
    Abstract
    Bashti Bone Plug Technique (BBPT) is a novel implant-less surgical methodology for Anterior Cruciate Ligament (ACL) reconstruction. The technique uses the core bone plug belonging to the patient, cut during tunneling with hole saw drill bit, to fix the ends of the tendon graft. Results show that when fitting the bone plug in this method, a large strike is required for fixation which leads to breaking the bone plug and consequently reducing the effective length of the bone plug inside the tunnel during fixation. Therefore, it was decided to use the sheath which covers the bone plug to overcome said challenges since during fixation with the sheath, Due to the low friction coefficient in these... 

    Controlled Release Delivery System for Antibiotic in Bone Cement

    , M.Sc. Thesis Sharif University of Technology Beyki Sarve ol’ya, Mohammad Saeed (Author) ; Abd Khodaei, Mohammad Jafar (Supervisor)
    Abstract
    The incidence of skeletal diseases such as osteoarthritis and its progression and the need to use knee replacement implants have significant effects on the quality of life. With the improvement of living conditions and the prolongation of the average life expectancy of the society and the aging of a large part of the society, the concern about the increase in the incidence of skeletal diseases and the need to use alternative implants increases. On the other hand, many conditions such as osteoporosis and accidents lead to fractures and cavities in the bones. Bone cements are one of the most widely used materials in orthopedic and spinal surgeries.The aim of this study was to construct a... 

    Design of Customized Cemented Stems for Hip Joint Arthroplasty Surgery in Patients with Severe Femoral Deformity

    , M.Sc. Thesis Sharif University of Technology Ebadi, Yashar (Author) ; Farahmand, Farzam (Supervisor)
    Abstract
    Hip replacement surgery is performed with the aim of relieving pain and restoring the normal function of the joint for patients who are in the final stages of arthritis. Standard prostheses offered by implant manufacturers come in a wide variety of models and sizes to meet the needs of patients. However, these commercial prostheses may not be suitable for patients with significant bony abnormalities, leading to implant instability and loosening. In such cases, a suitable solution is to use customized implants that are specifically designed to match the patient's unique anatomy. The purpose of this research was to design a customized cement stem for hip joint replacement surgery in patients...