Loading...
Search for: bone
0.005 seconds
Total 206 records

    Enhanced chondrogenic differentiation of human bone marrow mesenchymal stem cells on PCL/PLGA electrospun with different alignments and compositions

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 67, Issue 1 , 2018 , Pages 50-60 ; 00914037 (ISSN) Zamanlui, S ; Mahmoudifard, M ; Soleimani, M ; Bakhshandeh, B ; Vasei, M ; Faghihi, S ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    The simultaneous effect of electrospun scaffold alignment and polymer composition on chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMMSC) is investigated. Aligned and randomly oriented polycaprolactone/poly(lactic-co-glycolic acid) (PLGA) hybrid electrospun scaffolds with two different ratios are fabricated by electrospinning. It is found that aligned nanofibrous scaffolds support higher chondrogenic differentiation of hBMMSCs compared to random ones. The aligned scaffolds show a higher expression level of chondrogenic markers such as type II collagen and aggrecan. It is concluded that the aligned nanofibrous scaffold with higher PLGA ratio could significantly... 

    Pre-planning of intramedullary nailing procedures: A methodology for predicting the position of the distal hole

    , Article Medical Engineering and Physics ; Volume 74 , 2019 , Pages 172-179 ; 13504533 (ISSN) Mortazavi, J ; Farahmand, F ; Behzadipour, S ; Yeganeh, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Inserting the distal locking screws is a challenging step of the intramedullary nailing procedures due to the nail deformation that makes the proximally mounted targeting systems ineffective. A pre-planning methodology is proposed, based on an analytical model of the nail–bone construct, to predict the nail deformation during surgery using orthogonal preoperative radiographs. Each of the femoral shaft and the nail was modeled as a curved tubular Euler–Bernoulli beam. The unknown positions and forces of the nail–bone interaction were found using a systematic trial and error approach, which minimized the total strain energy of the system while satisfying the force and geometrical constraints.... 

    A new approach to C2 continuous piecewise bicubic representation of the articular surfaces of diarthrodial joints

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 220, Issue 4 , 2006 , Pages 553-563 ; 09544119 (ISSN) Jafari, A ; Farahmand, F ; Meghdari, A ; Golestanha, A. S ; Sharif University of Technology
    2006
    Abstract
    Based on the force-deflection equation for a beam subjected to lateral point loads, a C2 continuous piecewise bicubic mathematical representation was proposed to model complicated geometrical surfaces, e.g. the articular surfaces of human joints. The method was then extended so that it could be used for mathematical modelling of incomplete nets of data points, as well as smoothing of noisy and/or filtering of erroneous data points. Mathematical techniques were also developed to calculate the required unknown parameters explicitly, with no need to solve the system of equations simultaneously. The performance of the proposed method was evaluated on a number of surface modelling problems,... 

    Can the body slope of interference screw affect initial stability of reconstructed anterior cruciate ligament?: An in-vitro investigation

    , Article BMC Musculoskeletal Disorders ; Volume 22, Issue 1 , 2021 ; 14712474 (ISSN) Daneshvarhashjin, N ; Chizari, M ; Mortazavi, J ; Rouhi, G ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Superior biomechanical performance of tapered interference screws, compared with non-tapered screws, with reference to the anterior cruciate ligament (ACL) reconstruction process, has been reported in the literature. However, the effect of tapered interference screw’s body slope on the initial stability of ACL is poorly understood. Thus, the main goal of this study was to investigate the effect of the interference screw’s body slope on the initial stability of the reconstructed ACL. Methods: Based on the best screw-bone tunnel diameter ratios in non-tapered screws, two different tapered interference screws were designed and fabricated. The diameters of both screws were equal to... 

    Efficient seismic risk assessment of irregular steel-framed buildings through endurance time analysis of consistent fish-bone model

    , Article Structural Design of Tall and Special Buildings ; 2021 ; 15417794 (ISSN) Ahmadie Amiri, H ; Hosseini, M ; E. Estekanchi, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    The seismic risk framework of building structures has been presented to reduce earthquake-induced adverse consequences. In this context, probabilistic analysis of engineering demand parameters (EDPs) is always associated with many uncertainties and high computational demand for use in practical applications. This study has been presented to efficiently estimate the distribution of EDPs in probabilistic seismic risk assessment of irregular steel moment-resisting frames (SMRFs). For this purpose, the incorporation of the consistent fish-bone (CFB) model and the endurance time (ET) analysis method has been used. The proposed method (i.e., CFB-ET) has a substantial impact on reducing the... 

    Efficient seismic risk assessment of irregular steel-framed buildings through endurance time analysis of consistent fish-bone model

    , Article Structural Design of Tall and Special Buildings ; 2021 ; 15417794 (ISSN) Ahmadie Amiri, H ; Hosseini, M ; E. Estekanchi, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    The seismic risk framework of building structures has been presented to reduce earthquake-induced adverse consequences. In this context, probabilistic analysis of engineering demand parameters (EDPs) is always associated with many uncertainties and high computational demand for use in practical applications. This study has been presented to efficiently estimate the distribution of EDPs in probabilistic seismic risk assessment of irregular steel moment-resisting frames (SMRFs). For this purpose, the incorporation of the consistent fish-bone (CFB) model and the endurance time (ET) analysis method has been used. The proposed method (i.e., CFB-ET) has a substantial impact on reducing the... 

    ZnO-incorporated polyvinylidene fluoride/poly(ε-caprolactone) nanocomposite scaffold with controlled release of dexamethasone for bone tissue engineering

    , Article Applied Physics A: Materials Science and Processing ; Volume 128, Issue 8 , 2022 ; 09478396 (ISSN) FotouhiArdakani, F ; Mohammadi, M ; Mashayekhan, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Here we report on the development of a hybrid nanofibrous scaffold made from polyvinylidene fluoride (PVDF) nanofibers embedding zinc oxide nanorods (ZnOns), and poly(ε-caprolactone) (PCL) nanofibers incorporating dexamethasone (DEX)-loaded chitosan nanoparticles using dual-electrospinning method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and tensile analysis were carried out for physiochemical characterization of the scaffolds, followed by DEX release profile. In addition, an MTT assay was conducted to assess the viability of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) on the hybrid nanofibrous scaffold.... 

    Effects of plate contouring quality on the biomechanical performance of high tibial osteotomy fixation: A parametric finite element study

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 236, Issue 3 , 2022 , Pages 356-366 ; 09544119 (ISSN) Hayatbakhsh, Z ; Farahmand, F ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Locking plates have threaded holes, in which threaded-head screws are affixed. Hence, they do not need to be in intimate contact with underlying bone to provide fixation. There are, however, reports that a large distance between the plate and the bone might cause clinical complications such as delayed union or nonunion, screw pull out, and screw and plate breakage. Considering the diversity in the capabilities and costs of different plate customization techniques, the purpose of this study was to investigate the effect of the plate contouring quality on the biomechanical performance of high tibial osteotomy (HTO) fixation. A finite element model of proximal tibia was developed in Abaqus,... 

    Efficient seismic risk assessment of irregular steel-framed buildings through endurance time analysis of consistent fish-bone model

    , Article Structural Design of Tall and Special Buildings ; Volume 31, Issue 2 , 2022 ; 15417794 (ISSN) Ahmadie Amiri, H ; Hosseini, M ; E. Estekanchi, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    The seismic risk framework of building structures has been presented to reduce earthquake-induced adverse consequences. In this context, probabilistic analysis of engineering demand parameters (EDPs) is always associated with many uncertainties and high computational demand for use in practical applications. This study has been presented to efficiently estimate the distribution of EDPs in probabilistic seismic risk assessment of irregular steel moment-resisting frames (SMRFs). For this purpose, the incorporation of the consistent fish-bone (CFB) model and the endurance time (ET) analysis method has been used. The proposed method (i.e., CFB-ET) has a substantial impact on reducing the... 

    An analytical approach to study the intraoperative fractures of femoral shaft during total hip arthroplasty

    , Article Journal of Biomechanical Engineering ; Volume 135, Issue 4 , 2013 ; 01480731 (ISSN) Malekmotiei, L ; Farahmand, F ; Shodja, H. M ; Samadi Dooki, A ; Sharif University of Technology
    2013
    Abstract
    An analytical approach which is popular in micromechanical studies has been extended to the solution for the interference fit problem of the femoral stem in cementless total hip arthroplasty (THA). The multiple inhomogeneity problem of THA in transverse plane, including an elliptical stem, a cortical wall, and a cancellous layer interface, was formulated using the equivalent inclusion method (EIM) to obtain the induced interference elastic fields. Results indicated a maximum interference fit of about 210 μm before bone fracture, predicted based on the Drucker-Prager criterion for a partially reamed section. The cancellous layer had a significant effect on reducing the hoop stresses in the... 

    Experimental investigation and finite element modelling of PMMA/carbon nanotube nanobiocomposites for bone cement applications

    , Article Soft Matter ; Volume 18, Issue 36 , 2022 , Pages 6800-6811 ; 1744683X (ISSN) Sadati, V ; Khakbiz, M ; Chagami, M ; Bagheri, R ; Chashmi, F. S ; Akbari, B ; Shakibania, S ; Lee, K. B ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) are one of the preferred candidates for reinforcing polymeric nanobiocomposites, such as acrylic bone type of cement. In this study, at first, bulk samples of the reinforced polymethylmethacrylate (PMMA) matrix were prepared with 0.1, 0.25, and 0.5 wt per wt% of MWCNTs by the casting method. Tensile and three-point bending tests were performed to determine the essential mechanical properties of bone cement, such as tensile and bending strengths. The tensile fracture surfaces were investigated by scanning electron microscopy (SEM). The commercial software (Abaqus) was used to conduct finite element analysis (FEA) by constructing a representative volume... 

    2-D Bone Structure Prediction of Proximal Femur and Dominant Joint Load Estimation using Level Set Method and Bone RemodelingTheories

    , M.Sc. Thesis Sharif University of Technology Keivan Bahari, Mahsa (Author) ; Farahmand, Farzam (Supervisor) ; Movahhedy, Mohammad Reza (Supervisor) ; Rouhi, Gholamreza (Co-Advisor)
    Abstract
    Bones adapt their form and structure to make an efficient use of their mass against the applied mechanical loads. So, it is not surprising to assume that the geometry and density distribution of a bone contains information about its loading history. The objective of this work was to develop a framework to simulate the bone remodeling procedure as a topology optimization process and then use this framework to develop a simple technique for estimating the dominant joint loads based on the bone’s density distribution.
    At first, the remodeling equation was derived from the structural optimization task of minimizing the strain energy in each time step, using the level set method. Employment... 

    Effect of Fluorine Addition on Properties of Electrodeposited Fluorine-doped Hydroxyapatite Coating on AZ31 alloy

    , M.Sc. Thesis Sharif University of Technology Amirloo, Hossein (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    Magnesium and its alloys are potentialy biodegradable implant materials due to their attractive biological properties. But their poor corrosion resistance may result in sudden failure of the implants. Recently, many researchers have focused on applications of fluorine-doped hydroxyapatiteCa10(PO4)6(OH)2−xFx (FHA, x is the degree of fluoridation) as a bioactive coating to provide early stability and long-term performance. In comparison with pure HA coating,FHA coating could provide significant dissolution-resistant property, better apatite-like layer deposition, better protein adsorption, better cell attachment and improved alkaline phosphatase activity in cell culture. In this... 

    Design and Implementat of a Navigating Procedure for Robotic-assisted Fracture Reduction of Long Bones

    , M.Sc. Thesis Sharif University of Technology Pourebrahim, Majid (Author) ; Farahmand, Farzam (Supervisor)
    Abstract
    During femur fracture reduction surgery, both patients and surgeons are exposed to a great amount of radiation, which is harmful to their health. Computer-assisted orthopaedic surgery (CAOS) is a less invasive approach for its ability to reduce the usage of image intensifiers. Various robots have been developed for femur fracture reduction surgery. Most of these robots are based on serial architectures. Both low load-carrying capacity and poor accuracy are inherent to serial robots, which makes them inappropriate for femur fracture reduction. Some parallel robots using the “Stewart platform” have also been developed for femur fracture reduction, but their restricted workspace limits their... 

    Optimal Design of an External Fixator for Knee Injuries & Deformities

    , M.Sc. Thesis Sharif University of Technology Godazandeh, Bardia (Author) ; Zohoor, Hassan (Supervisor)
    Abstract
    Since ancient time, healing patients suffering from bone deformities has been one of the most important challenges of physicians. In recent decades, by helping bio mechanic engineers external fixators has been used for this purpose. These fixators divided to parallel and series forms. One of the remarkable merit of parallel external fixators is their high maneuverability. These fixators usually have six degree of freedom, and follow the movement’s pattern of Stewart robots. In this project by studying different fixators which has been commercials, we present two conceptual models of these fixators which three and four legs are used for connecting the lower and upper plates, respectively. The... 

    Design and Fabrication of Biodegradable Polymeric Scaffold with nano-Bioglass for Osteoblast cell Growth

    , M.Sc. Thesis Sharif University of Technology Razaghzadeh Bidgoli, Mina (Author) ; Vossoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor) ; Tamjid Shabesteri, Elnaz (Co-Advisor)
    Abstract
    Treatment of critical-size bone defects caused by sport injuries, accidents, trauma, infection, and osteoporosis remains a major clinical challenge. In order to repair or regenerate large bone defects, bioactive three-dimensional scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced mass transport and diffusion. Many studies reported that macropore diameters greater than 500 µm can lead to vascularized bone tissue. In this study, a hierarchically porous composite scaffold was prepared. Hierarchically porous silk fibroin- bioactive glass composite and fibroin scaffold were fabricated with controlled architecture and interconnected structure with... 

    Synthesis of Antibacterial Hydroxyapatite/Titania-Silver Coating on Titanium Substrate Using Sol-Gel Method

    , M.Sc. Thesis Sharif University of Technology Azadeh, Mohsen (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    With the increase in the average age of the world's population, osteoporosis is a worldwide incidence. This disease, along with natural disasters, are important factors in the occurrence of fractures in various bones of the body. One of the methods for solving this problem and replacing with broken body bones is the use of metal implants with hydroxyapatite-based coatings. One of the common problems with using implants in the body is the infection in the adjacent parts of the implant. To overcome this problem, several studies have been carried out on the use of hydroxyapatite coatings with metal ions or antibacterial oxide compounds. In the present study, the influence of factors such as the... 

    Design and Fabrication of a Distal Locking Screw Aiming Device for Treatment of Shaft Fractures of Long Bones with Intramedullary Nails

    , M.Sc. Thesis Sharif University of Technology Porsa, Sina (Author) ; Farahmand, Farzam (Supervisor) ; sadat fumani, Mahmood (Supervisor)
    Abstract
    Fractures of the shaft of the long bones-especially in femur and tibia- is one of the most common fractures. In past decades various methods have been suggested for induction, fixation and repair of these fractures. The main fixation method for shaft fractures of femur and tibia in adult patients is named “Intramedullary Nailing”. In this method, after inducing the fracture, the bone marrow is pulled out via a hole created in the proximal part of the bone. Then, a nail will go down through this empty space inside the bone. This nail will be fixed in to proximal and distal parts of fractures with some locking screws. This way, the part of fracture cannot move respect to each other and the... 

    Kinematic Design of a Parallel Robot in Reduction of Femoral Shaft

    , M.Sc. Thesis Sharif University of Technology Kazemirad, Siavash (Author) ; Zohoor, Hassan (Supervisor) ; Farahmand, Farzam (Supervisor)
    Abstract
    The goal of fracture reduction in orthopedic surgery is to reposition the bone fragments in their anatomical orientation (alignment), and the fracture ends closed to each other (apposition). Reduction of long bone fractures is became an interesting subject in the field of robotic aided surgery in pervious decade. Nowadays reduction of femur is carried out by surgeons and medical staff in surgery. Due to the large holding forces necessary, exact positioning is difficult and time consuming. What is needed is an automated system whereby the fractured ends of the bone may be precisely positioned without the need for multiple docking attempts. The fragments need to be held in place as long as... 

    3D Stem Cell Culture and Differentiation Using Alginate Hydrogel Scaffolds Incorporated with Silicon-Based Nanoparticles

    , Ph.D. Dissertation Sharif University of Technology Hassani, Masoud (Author) ; Yaghmaei, Soheila (Supervisor) ; Arpanaei, Ayyoob (Co-Supervisor) ; Dolatshahi Pirouz, Alireza (Co-Supervisor)
    Abstract
    Bone is one of the most vital parts of the body for almost any functional movement. Due to its many involved diseases, traumas and injuries, bone maintenance and regeneration are of high importance. Engineering and design of complex tissues, with impeccable mimicry of the native ones, are always accounted as the solution to dysfunction of body organs due to aging, various diseases, etc. However, the inability to complete mimicry of the native tissue architecture and cell microenvironment are the main barriers to functional tissue regeneration. In this project, in order to design a suitable scaffold for bone regeneration, hydrogel nanocomposites with polysaccharide basis were developed by...