Loading...
Search for: cmos-technologies
0.011 seconds

    A sub 1 v high PSRR CMOS bandgap voltage reference

    , Article Microelectronics Journal ; Volume 42, Issue 9 , 2011 , Pages 1057-1065 ; 00262692 (ISSN) Chahardori, M ; Atarodi, M ; Sharifkhani, M ; Sharif University of Technology
    2011
    Abstract
    A Bandgap circuit capable of generating a reference voltage of less than 1 V with high PSRR and low temperature sensitivity is proposed. High PSRR achieved by means of an improved current mode regulator which isolates the bandgap voltage from the variations and the noise of the power supply. A vigorous analytical approach is presented to provide a universal design guideline. The analysis unveils the sensitivity of the circuit characteristic to device parameters. The proposed circuit is fabricated in a 0.18μm CMOS technology and operates down to a supply voltage of 1.2 V. The circuit yields 20 ppm/°C of temperature coefficient in typical case and 50 ppm/°C of temperature coefficient in worst... 

    A subthreshold dynamic read SRAM (DRSRAM) based on dynamic stability criteria

    , Article Proceedings - IEEE International Symposium on Circuits and Systems ; 2011 , Pages 61-64 ; 02714310 (ISSN) ; 9781424494736 (ISBN) Saeidi, R ; Sharifkhani, M ; Hajsadeghi, K ; Sharif University of Technology
    Abstract
    This paper introduces a Dynamic Read SRAM (DRSRAM) architecture for high-density subthreshold RAM applications. DRSRAM performs a dynamic read operation to overcome the poor stability and bitline leakage problem of 6T SRAM cell in sub-threshold region. It is shown that there is fundamental limit for wordline activation time and recovery time under a given cell mismatch and bitline leakage. To verify the proposed technique, a 64128 bit array of the 6T bit-cell is simulated in 90 nm CMOS technology. The simulation results show a 100% noise margin enhancement at subthreshold region. This design operates down to 300 mV at a 1 MHz clock rate with noise margins as large as 72 mV. This design... 

    A 1.93 pA/√Hz transimpedance amplifier for 2.5 Gb/s optical communications

    , Article Proceedings - IEEE International Symposium on Circuits and Systems ; 2011 , Pages 2889-2892 ; 02714310 (ISSN) ; 9781424494736 (ISBN) Shahdoost, S ; Medi, A ; Saniei, N ; Sharif University of Technology
    Abstract
    A state-of-the-art low-noise transimpedance amplifier (TIA) for 2.5 Gb/s family is presented using IBM 0.13-m CMOS technology. This TIA would be a part of a homodyne detector in a quantum key distribution (QKD) system. In this work a thorough design methodology based on a novel analytical noise optimization is presented. Also a unique method for eliminating the DC current of the input photodiodes (PDs) is proposed. The post-layout simulation results show bandwidth of 52 kHz to 1.9 GHz, average input referred noise of 1.93 pA/√Hz, and transimpedance gain of 80 db while dissipating 12 mW from a 1.5 V power supply, including the output buffer  

    Implementation of a fully integrated 30-dBm RF CMOS linear power amplifier with power combiner

    , Article AEU - International Journal of Electronics and Communications ; Volume 65, Issue 6 , June , 2011 , Pages 502-509 ; 14348411 (ISSN) Javidan, J ; Atarodi, S. M ; Sharif University of Technology
    2011
    Abstract
    In this paper, a fully integrated 30-dBm UHF band differential power amplifier (PA) with transformer-type combiner is designed and fabricated in a 0.18-μm CMOS technology. For the high power PA design, proposed transformer network and the number of power cells is fully analyzed and optimized to find inductors dimensions. In order to improve both the linear operating range and the power efficiency simultaneously, a parallel combination of the class AB and the class C amplifier in power cells was employed. The PA delivers an output power of 29 dBm and a power-added efficiency of 24% with a power gain of 20 dB, including the losses of the bond-wires  

    A low power, low phase noise, square wave LC quadrature VCO and its comprehensive analysis for ISM band

    , Article AEU - International Journal of Electronics and Communications ; Volume 65, Issue 5 , 2011 , Pages 458-467 ; 14348411 (ISSN) Atarodi, M ; Torkzadeh, P ; Behmanesh, B ; Sharif University of Technology
    Abstract
    This paper presents a phase-noise reduction technique for voltage-controlled oscillators (VCOs) using a harmonic tuned (HT) LC tank. The phase-noise suppression is achieved through almost rectangular-shaped VCO oscillating signal which effectively maximizes oscillating signal slope at zero crossing points resulting in-phase-noise degradation. In addition, by shortening down converted noise power around oscillating signal second harmonic, more phase-noise suppression has been achieved. A comprehensive analysis for frequency and amplitude deviations as high as 20% for third harmonic and its effect on output phase-noise suppression has been discussed. In the followings, a comprehensive analysis... 

    New method to synthesize the frequency bands with DLL-based frequency synthesizer

    , Article 2011 International Conference on Communications and Signal Processing, ICCSP 2011, Kerala, 10 February 2011 through 12 February 2011 ; 2011 , Pages 300-304 ; 9781424497980 (ISBN) Gholami, M ; Gholamidoon, M ; Hashemi, M ; Sharif University of Technology
    Abstract
    This paper presents a new architecture for a DLL based frequency synthesizer. Occupying low area, lower power consumption and phase noise are the advantages of this novel architecture. DLLs are first ordered systems, so good stability can be obtained in this design. This structure also can be used for generating fractional multiple of reference frequencies. The proposed circuit can operate at a substantially low supply voltage. A case in point, the synthesizer is adopted to create the channel frequencies of French DVB-H/T standard. The circuit is designed based on 0.13um CMOS Technology. Also power consumption trade-offs are introduced. It was shown that 27 delay cells are sufficient to... 

    A 6-bit active digital phase shifter

    , Article IEICE Electronics Express ; Volume 8, Issue 3 , 2011 , Pages 121-128 ; 13492543 (ISSN) Asoodeh, A ; Atarodi, M ; Sharif University of Technology
    2011
    Abstract
    This paper presents the design of a 6-bit active digital phase shifter in 0.18-μm CMOS technology. The active phase shifter synthesizes the required phase using a phase interpolation process by adding quadrature phased input signals. It uses a new quadrature all-pass filter for quadrature signaling with a wide bandwidth and low phase error. The phase shifter has simulated RMS phase error of <0.85° at 2.4-5 GHz. The average voltage gain ranges from 1.7 dB at 2.4GHz to -0.14 dB at 5 GHz. Input P1 dB is typically 1.3±0.9 dBm at 3.5 GHz for overall phase states  

    Sub-threshold charge recovery circuits

    , Article Proceedings - IEEE International Conference on Computer Design: VLSI in Computers and Processors, 3 October 2010 through 6 October 2010, Amsterdam ; 2010 , Pages 138-144 ; 10636404 (ISSN) ; 9781424489350 (ISBN) Khatir, M ; Mohammadi, H. G ; Ejlali, A ; IEEE; IEEE Circuits and Systems Society; IEEE Computer Society; HiPEAC Compilation Architecture ; Sharif University of Technology
    2010
    Abstract
    Embedded systems account for wide range of applications. However, the design of such systems is faced with a diverse spectrum of criteria. The energy consumption, performance, and demanding security concerns are some of the most significant challenges in designing of such systems. With these challenges, the design process can be managed more easily if a flexible logic circuit with the ability of satisfying the abovementioned concerns is taken into account. To achieve such a logic circuit, in this paper we have combined the sub-threshold operation and charge recovery techniques. Using our technique, lower power consumption, ability of operating at higher frequencies, and more security (to... 

    A 6-Bit CMOS phase shifter for S - Band

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 58, Issue 12 PART 1 , 2010 , Pages 3519-3526 ; 00189480 (ISSN) Meghdadi, M ; Azizi, M ; Kiani, M ; Medi, A ; Atarodi, M ; Sharif University of Technology
    Abstract
    A 6-bit passive phase shifter for 2.5- to 3.2-GHz frequency band has been designed and implemented in a standard 0.18- μm CMOS technology. A new switched-network topology has been proposed for implementing the 5.625 ° phase shift step. The insertion loss of the circuit is compensated with an on-chip bidirectional amplifier. The measured return losses of the circuit are better than 8 dB with output 1-dB compression point of +9.5 dBm in the transmit mode and noise figure of 7.1 dB in the receive mode. The fabricated phase shifter demonstrates an average rms phase error of less than 2° over the entire operation bandwidth, which makes it suitable for high-precision applications  

    High power amplifier based on a transformer-type power combiner in CMOS technology

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; Volume 57, Issue 11 , November , 2010 , Pages 838-842 ; 15497747 (ISSN) Javidan, J ; Atarodi, M ; Luong, H. C ; Sharif University of Technology
    2010
    Abstract
    In this brief, a transformer-type power combiner for a fully integrated high-power CMOS power amplifier (PA) is presented. The proposed power combiner is composed of a number of transformers that, unlike the ones in conventional approaches, have different sizes. This leads to higher efficiency and smaller chip area. After considering several power stage topologies, analysis and optimization of the transformer network (the power combiner) are presented. To demonstrate the advantages of the proposed architecture, a 900-MHz CMOS PA with the proposed power combiner was implemented with a 0.18-μm radio-frequency CMOS process. The amplifier achieved an efficiency value of 24% at the maximum output... 

    A scalable offset-cancelled current/voltage sense amplifier

    , Article ISCAS 2010 - 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, 30 May 2010 through 2 June 2010, Paris ; 2010 , Pages 3853-3856 ; 9781424453085 (ISBN) Attarzadeh, H ; SharifKhani, M ; Jahinuzzaman, S. M ; Sharif University of Technology
    2010
    Abstract
    the application of current sense amplifiers in scaled SRAM design is limited by two factors: the DC offset due to the device mismatch and limited voltage headroom. The presented scheme reduces the effect of offset by proposing an extra phase for offset cancellation before current sensing takes place. A twofold reduction of the cell access time is achieved compared to the conventional scheme under similar cell current and bitline capacitance. The offset cancellation phase takes place in parallel to the wordline decoding time in order to speed up the current sensing. The proposed scheme requires a small power budget due to a self shut off mechanism. In addition to presenting a comparison with... 

    A modified complex K-Best scheme for high-speed hard-output MIMO detectors

    , Article Midwest Symposium on Circuits and Systems, 1 August 2010 through 4 August 2010 ; August , 2010 , Pages 845-848 ; 15483746 (ISSN) ; 9781424477715 (ISBN) Mahdavi, M ; Shabany, M ; Vosoughi Vahdat, B ; IEEE Circuits and Systems Society ; Sharif University of Technology
    2010
    Abstract
    The current literature lacks the VLSI realization of hig-horder multiple-input-multiple-output (MIMO) detectors in the complex domain, which finds applications in advanced wireless standards such as WiMAX and Long Term Evolution (LTE) systems. In this paper, a novel modified complex K-Best algorithm and its VLSI implementation for a 4 ×4, 64QAM complex MIMO detector are proposed. The main contributions of this paper are the modified hard-output complex K-Best algorithm as well as its efficient architecture, which is well-suited for a pipelined VLSI implementation. By using an efficient fast multiplier and applying both fine-grain pipelining and coarse-grain pipelining to the architecture of... 

    Single-VCO multi-band DTV frequency synthesizer with a divide-by-3 frequency divider for quadrature signal generation

    , Article Analog Integrated Circuits and Signal Processing ; Volume 64, Issue 2 , 2010 , Pages 103-113 ; 09251030 (ISSN) Saeedi, S ; Atarodi, M ; Sharif University of Technology
    Abstract
    A multi-band frequency synthesizer for In-phase and Quadrature (I/Q) LO signal generation in Digital TV tuners is presented. Using divisor numbers other than powers of 2 (2 n ) for quadrature generation, reduces the required frequency range of the VCO, hence the number of VCO circuits, in multi-band frequency synthesizers. In the proposed synthesizer, VHF, UHF and L-band frequencies are covered with only one VCO. This is achieved by using a novel divide-by-3 circuit which produces precise I/Q LO signals. The VCO tuning range in this design is 2,400-3,632 MHz which is covered by a 6-bit switched-capacitor bank. A fast adaptive frequency calibration block selects the closest VCO frequency to... 

    A dual mode UHF EPC Gen 2 RFID tag in 0.18 μm CMOS

    , Article Microelectronics Journal ; Volume 41, Issue 8 , 2010 , Pages 458-464 ; 00262692 (ISSN) Najafi, V ; Mohammadi, S ; Roostaie, V ; Fotowat-Ahmady, A ; Sharif University of Technology
    2010
    Abstract
    A dual mode UHF RFID transponder in 0.18 μm CMOS conforming to the EPC Gen 2 standard is presented. Low voltage design of the analog and digital blocks enables the chip to operate with a 1 V regulated voltage and thus to reduce the power consumption. The novel dual mode architecture enables the chip to work in passive and battery-assisted modes controlled by the reader. A custom Gen 2 based command switches the operation mode of the circuit. By using a special clock calibration method the chip operates from 1.2 to 5 MHz clock frequency. Several low power techniques are employed to reduce the power consumption of the chip which is essential in passive RFID tags. Measurement results show that... 

    A compact 8-bit AES crypto-processor

    , Article 2nd International Conference on Computer and Network Technology, ICCNT 2010, 232010 through 25 April 2010 ; April , 2010 , Pages 71-75 ; 9780769540429 (ISBN) Haghighizadeh, F ; Attarzadeh, H ; Sharifkhani, M ; Sharif University of Technology
    2010
    Abstract
    Advance Encryption Standard (AES), has received significant interest over the past decade due to its performance and security level. In this paper, we propose a compact 8-bit AES crypto-processor for area constrained and low power applications where both encryption and decryption is needed. The cycle count of the design is the least among previously reported 8-bit AES architectures and the throughput is 203 Mbps. The AES core consumes 5.6k gates in 0.18 μm standard-cell CMOS technology. The power consumption of the core is 49 μW/MHz at 128 MHz which is the minimum power reported thus far  

    Continuous-time/discrete-time (CT/DT) cascaded sigma-delta modulator for high resolution and wideband applications

    , Article WMED 2010 - 8th IEEE Workshop on Microelectronics and Electron Devices, 16 April 2010 through 16 April 2010 ; April , 2010 , Pages 33-36 ; 9781424465750 (ISBN) Mesgarani, A ; Sadeghi, K. H ; Ay, S. U ; Sharif University of Technology
    2010
    Abstract
    This paper reports transistor-level design of a new continuous-time (CT), discrete-time (DT) cascaded sigma delta modulator (SDM). The combination of a CT first stage and a DT second stage was utilized to realize a high speed, high resolution analog-to-digital converter (ADC). Power consumption of CT first stage is lowered by optimizing the gain coefficients of CT integrators in a feedforward topology. Moreover double sampling (CDS) was used in second stage integrators to further reduce power consumption. Proposed new SDM is simulated in 0.18μm CMOS technology and achieves 84dB dynamic range for a 10MHz signal bandwidth. Total analog power dissipation measured was 44mW  

    A novel nano-scaled SRAM cell

    , Article World Academy of Science, Engineering and Technology ; Volume 65 , 2010 , Pages 172-174 ; 2010376X (ISSN) Azizi Mazreah, A ; Sahebi, M. R ; Manzuri Shalmani, M. T ; Sharif University of Technology
    Abstract
    To help overcome limits to the density of conventional SRAMs and leakage current of SRAM cell in nanoscaled CMOS technology, we have developed a four-transistor SRAM cell. The newly developed CMOS four-transistor SRAM cell uses one word-line and one bit-line during read/write operation. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 19% smaller than a conventional six-transistor cell using same design rules. Also the leakage current of new cell is 60% smaller than a conventional sixtransistor SRAM cell. Simulation result in 65nm CMOS technology shows new cell has correct operation during read/write operation and idle mode  

    A novel overlap-based logic cell: An efficient implementation of flip-flops with embedded logic

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Volume 18, Issue 2 , 2010 , Pages 222-231 ; 10638210 (ISSN) Sarbishei, O ; Maymandi Nejad, M ; Sharif University of Technology
    2010
    Abstract
    This paper presents several efficient architectures of dynamic/static edge-triggered flip-flops with a compact embedded logic. The proposed structure, which benefits from the overlap period, fixes most of the drawbacks of the dynamic logic family. The design issues of setting the appropriate overlap period for this architecture are explained. The proposed overlap-based approach is compared with several state-of-the-art dynamic/static logic styles in implementing a 4-bit shift register and an odd-even sort coprocessor using different CMOS technologies. The simulation results showed that the overlap-based logic cells become much more efficient when the complexity of their embedded logic... 

    A fully integrated 0.18-μm CMOS transceiver chip for X-band phased-array systems

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 60, Issue 7 , 2012 , Pages 2192-2202 ; 00189480 (ISSN) Gharibdoust, K ; Mousavi, N ; Kalantari, M ; Moezzi, M ; Medi, A ; Sharif University of Technology
    Abstract
    An X-band core chip is designed and fabricated in 0.18-μm CMOS technology, which can significantly reduce the monolithic microwave integrated circuit count required for realizing an active beam-former T/R module. The core chip consists of two RX/TX paths, each of which includes a 6-b phase shifter, a 6-b attenuator, along with two input and output amplifiers. A new architecture for realizing such a core chip system and a low loss circuit for 5.625° phase shift block are proposed. The overall rms phase and gain errors are better than 2° and 0.25 dB, respectively, in both RX/TX paths. The gain of each path is around 12 dB, while the output 1-dB compression point is higher than 10 dBm over the... 

    An audio band low voltage CT-ΔΣ modulator with VCO-based quantizer

    , Article 18th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2011, 11 December 2011 through 14 December 2011 ; December , 2011 , Pages 232-235 ; 9781457718458 (ISBN) Yousefzadeh, B ; Sharifkhani, M ; Sharif University of Technology
    Abstract
    This paper presents the design and implementation of a low power, low voltage, continuous time delta sigma modulator for audio band in 90 nm CMOS technology. A VCO-based integrator and quantizer are used. Inherent dynamic element matching (DEM) of the quantizer eliminates the need for explicit DEM logic which results in a short excess-delay and power saving. Simulation results show that the modulator achieves 78 dB SNDR and 87 dB SNR in a 20 kHz input bandwidth and dissipates 106 μW from 1 V supply. The power consumption for different parts is discussed