Loading...
Search for: coatings
0.011 seconds

    Production of Cr-Al2O3 Nano-Composite Coatings by Electrodeposition

    , M.Sc. Thesis Sharif University of Technology Salehi Doolabi, Mohsen (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Electroplating is an appropriate method for co-deposition of metallic, non-metallic and polymeric fine particles onto a metal matrix for production of functional coatings. In this study, chromium and Cr–Al2O3 composite coatings are electrodeposited from trivalent chromium bath by using DC and square pulse current. Dependence of the amount of Al2O3 nano-particles trapped into the coatings on the Al2O3 bath concentration, average current density, particle size, agitation rate and type of the current is investigated. These parameters are optimized for the highest co-deposition amount of the Al2O3 onto chromium layer. Optimum values are 20g/l Al2O3, 200 rpm stirring rate and 25A/dm2 current... 

    Corrosion Resistance of Graphene-Titania Coating on 316 Stainless Steel by Electrophoretic Deposition

    , M.Sc. Thesis Sharif University of Technology Parvizi, Sahar (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    The aim of this thesis was creating Titania/RGO coating with electrophoretic method to evaluate the corrosion resistance of stainless steel 316. At first Graphene Oxide were synthesized with modified Hammers method and their physical, chemical and morphological properties have been investigated using XRD, FTIR, EDX, TGA, UV-Vis and Raman analysis. then Graphene Oxide was added to the bath of titanium and was deposited on 316 stainless steel substrates. Moreover, corrosion protection of coating has been examined using Poarization test and Electrochemical Impedance Spectrometry. The effect of deposition parameters on corrosion properties of composite coatings were examined. The key variables... 

    The Comparison Between TiN and Hard Chromium Coatings

    , M.Sc. Thesis Sharif University of Technology Ghominejad , Hanieh (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    This research focuses on finding an appropriate method for increasing wear and corrosion resistance of hard coating TiN PVD and chromium. The substrate was made up of 42CrMo4 (DIN) steel (used for marine industries) and coated by TiN Arc PVD process and hard chromium electro-deposition. The results of these two coatings are compared and the better coating which is TiN Arc PVD is suggested. To find the best method for coating, several test studies are organized such as: the mechanical and tribological properties of TiN PVD and hard chromium coatings for wear and corrosion resistance applications are organized. The potentiodynamic polarization technique was used to measure the corrosion rate... 

    Synthesis of Tin and Ti2n Nanostructured Coatings on Ti alloys Using Magnetron Sputtering System And Comparison of Their Biocompatibility Properties

    , M.Sc. Thesis Sharif University of Technology Kalantari Saghafi, Mahsa (Author) ; Nemati, Ali (Supervisor) ; Khamse, Sara (Supervisor)
    Abstract
    Considering the importance of biocompatibility of implantable prothesis’, metallic alloys have weaker corrosion resistance than ceramics. In order to extend usage of nanomaterials to improve the bio-properties of materials, Nano-structured ceramic coatings are being suggested to improve corrosion resistance and biocompatibility of prosthesis. Meanwhile, very good properties of TiN, such as corrosion resistance and mechanical properties as a thin film coating are undeniable. In this study, TiN and Ti2N thin film were deposited on Ti-based substrate, using PVD and Magnetron sputtering at different argon to nitrogen ratio. The crystal structure of the films was examined using Grazing XRD... 

    Effect of TiO2 Coating on Efficiency of Black Electroless Ni-P Solar Absorber

    , M.Sc. Thesis Sharif University of Technology Razmjoo Khollari, Mohammad Amin (Author) ; Ghorbani, Mohammad (Supervisor) ; Afshar, Abdollah (Supervisor)
    Abstract
    In this thesis Blackening of electroless nickel-phosphorous coating and the effect of TiO2 anti-reflection coating on optical properties of coating was investigated. In the first step, electroless nickel coatings with different amounts of phosphorous on 1050 aluminium substrate deposited. In second step, blackening of coatings by chemical and electroche-mical methods have studied and in final step, effect of TiO2 antireflection coatings with different amount of Pluronic F127 on the optimum black surface and properties of coating investigated. Chemical blackening performed in nitric acid and effect of acid concenteration, Blackening time and temperature studied. optimized condition was... 

    Probing the Performance of Safflower Plant as a Green Inhibitor with Molybdenum Disulfide on Corrosion Protection Properties of the Epoxy Coating

    , M.Sc. Thesis Sharif University of Technology Nematian, Bahram (Author) ; Ramazani Saadat Abadi, Ahmad (Supervisor) ; Mahdavian Ahadi, Mohammad (Supervisor)
    Abstract
    Today, the process of corrosion and compensation of minor injuries, without the need for tracing or any other physical interference, has become one of the subjects of interest to researchers. Inhibitors have been considered as one of the anti-corrosion agents. In this research, safflower extract as a green inhibitor in sodium chloride corrosive environment was used to evaluate the rate of corrosion of mild steel. Also the MoS2 nanoparticles were used as carrier of this green inhibitore in the epoxy coating to allow the activation of the coating in a scratched state in sodium chloride solution of 3.5%. In the first step, the extract of the safflower was prepared to reach the best part of this... 

    Antistatic Polyurethane Coating Containing Zirconia Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Najafkhani, Hossein (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    In this study, antistatic waterborne polyurethane coating containing zirconia nanoparticles is made and applied on 304 stainless steel substrates at weight percentage of 0.66, 1.3, 3, 4.5 and 6% zirconia nanoparticles. For synthesis of hydrophilic isocyanate prepolymer, isocyanate prepolymer is modified by hydrophilic polyethylene glycol with molecular weight 600, 1000 and 4000. For ensuring of modification condition and stability of hydrophilic isocyanate prepolymer in aqua solution, FTIR and stability tests are employed, respectively. In order to create antistatic properties of these coatings, semi - conductive zirconia nanoparticles are used. To improve the distribution of zirconia... 

    Development of Printing Methods for Fabrication of Perovskite Solar Cells

    , M.Sc. Thesis Sharif University of Technology Shabanzade, Mostafa (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    The highest efficiency of Perovskite solar cells that is attained up to now, is around 24%. This champion solar cell is prepared under vacuum. This method suffers from low rapidity, small deposition area and high cost which are not compatible with commercialization. Printing method has a special position in mass production of electronic equipment, such as solar cells. This method has the potential of high rapid, low cast and repeatable deposition. In this thesis, I introduce a novel deposition method, named Capillary Adhesion Coating, which is based on capillary concept. The novel deposition method coats infinite perfect thinfilms with high rapidity and low cost. After the introducing of... 

    Electrodeposition and Characterization of Zn-Ni-P/Zn-Ni Multilayer from Citrate Bath

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Kiumars (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    The aim of this study was electrodeposition of Zn-Ni-P/Zn-Ni multilayer coatings by single-bath method from a citrate bath to produce a sacrificial coating with high barrier properties compared to Zn-Ni monolayer coating. The coatings that were prepared at 10 mA/cm2 was Zn-Ni-P (Ni-rich and percentage of zinc, nickel and phosphorus, respectively: 40, 50 and 10 %), and the alloy deposited in 60 mA/cm2 were practically Zn-Ni (Zn-rich, 85% zinc) and almost phosphorus free. Galvanostatic pulse deposition method through switching of the current density between the two values mentioned in monolayers (10 and 60 mA/cm2) in different time periods to create bilayers corresponding to the monolayers,... 

    Fabrication and Evaluation of Mechanical and Anti-corrosion Properties of Epoxy Resin/Carbon Nanofibers Containing Organic Corrosion Inhibitors

    , M.Sc. Thesis Sharif University of Technology Ghaderi, Mohammad (Author) ; Ramazani Saadat Abadi, Ahmad (Supervisor) ; Mahdavian Ahadi, Mohammad (Supervisor)
    Abstract
    To protect mild steel against corrosion, an intelligent self-healing epoxy (EP) coating including carbon nanofiber (CNF) modified with polydopamine (PDA)-La (III) complex was successfully fabricated. The high aspect ratio and unique thermal and electrical characteristics of CNF made it an ideal physical barrier against the penetration of corrosive ions. Due to the poor dispersion of CNF, its surface was modified using PDA. PDA, which contains functional groups such as catechol, amine, and imine, can mitigate corrosion reaction by generating the Fe-Catechol complex and also boost the coating's adherence to the metal surface, in addition to anchoring La3+ inorganic corrosion inhibitor.... 

    Synthesis and Investigation of Hybrid Nanoparticles Based on Metal-Organic Framework on the Properties of Polymeric Coatings

    , M.Sc. Thesis Sharif University of Technology Dabaleh, Amin (Author) ; Shojaei, Akbar (Supervisor) ; Molavi, Hossein (Co-Supervisor) ; Nematollahzadeh, Ali (Co-Supervisor)
    Abstract
    In this study, MOF / PAN hybrid nanoparticles have been used as active anti-corrosion inhibitors for the first time. At first, UIO-66, PANI, and hybrid nanoparticles were synthesized based on different weight percentages of UIO-66. Their functional groups, crystal structure, nanoparticle morphology, porosity structure, stability and thermal performance were investigated using FT-IR, XRD, FE-SEM, BET, and TGA analyses, respectively. The type of nanoparticle structure formation was investigated by TEM images. The particle size distribution along with their surface charge was determined using DLS analysis. Inhibitory properties of nanoparticles were evaluated by TOEFL polarization method and... 

    Fabrication and Characterization of Electrochemical Properties of Porous Ni and Ni/rGO Nanocomposite by Electrochemical Deposition for Pseudocapacitor Application

    , M.Sc. Thesis Sharif University of Technology Sabzeh, Parisa (Author) ; Abachi, Parvin (Supervisor) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Fabrication of porous hybrid coatings, specially in combination with carbon compounds, can improve the electrochemical behavior of the coating. In this study, graphene oxide (GO) was first synthesized by tour method. After examining different methods to create a porous coating, the electrochemical coating method for simultaneous deposition of GO and nickel on the copper substrate was selected. CTAB was used to form nanometer porosity in the coating structure. In order to investigate the effect of GO on the properties of the deposited coating, two porous coatings of nickel (Ni) and nickel reduced-graphene oxide (Ni-rGO) were investigated by different analyzes. These analyzes include FESEM... 

    Produce of Nano composite Antibacterial Coating of PDMS+TiO2+ Ag3PO4 on 316SS Using Sol-Gel Methods and its Properties

    , M.Sc. Thesis Sharif University of Technology Ghamari, Niloufar (Author) ; Afshar, Abdullah (Supervisor)
    Abstract
    The aim of this research is to create coatings with antibacterial and superhydrophobic properties. To evaluate this, the sourness angle test, bacterial culture and halo diameter test have been used. The results show that 316L stainless steel containing PDMS+TiO2+7%Ag3PO4 coating, which is applied by immersion method on the substrate, has a water contact angle of 152 degrees, the number of bacteria cfu.cm2 is 44000 and the halo diameter is 24 mm. which has the best performance among other examples. In order to increase the adhesion of coatings on 316L stainless steel, first heat treatment was performed and then the samples were placed in H2SO4:H2O2 solution for 1 hour to form its OH- groups... 

    Electrodeposition of Ni-P/Cu Multilayer, Mechanism Study, Corrosion and Wear Properties

    , M.Sc. Thesis Sharif University of Technology Hassanpour Youzband, Akram (Author) ; Ghorbani, Mohammad (Supervisor) ; Dolati, Abolghassem (Supervisor)
    Abstract
    The aim of this project is electrodeposition of Cu/Ni-P multi-layer coating and investigating the nucleation and growth mechanisms of the deposits. To evaluate the effect of the selected bath on the kinetics of the process and deposition, cyclic voltammetry and chronoamperometry studies were conducted and electrodeposition mechanism was obtained three-dimensional instantaneous nucleation and growth controlled by diffusion. Potentiostatic pulse-deposition method with potential steps -0.3 and -1.1 V vs SCE was selected for deposition of Cu/Ni-P multi-layers. In order to demonstrate the effect of monolayer thickness on the properties of the final coating, multiple layers with various monolayers... 

    Synthesis and Investigation of Corrosion Resistance and Mechanical Properties of Ni-Fe Multilayer Coatings with SiC Particles

    , M.Sc. Thesis Sharif University of Technology Abedi, Masoumeh (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Electrochemical deposition of multilayer coatings is one of the surface engineering techniques to create thin surface layers with a controlled structure in order to create desirable surface properties. In this research, the nickel-iron-silicon carbide multilayer coating is deposited from a single bath with a sulfate composition and by changing the current density between two values (10 and 40 mA/cm2). The number of layers in multilayer coating was 4, 8, 16, 32.The effect of current density and the number of layers on chemical composition, surface morphology, phase structure, corrosion resistance, nano hardness measurement, wear resistance of multilayer coatings respectively using electron... 

    Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: Corrosion and sintering temperature

    , Article Applied Surface Science ; Vol. 301 , May , 2014 , pp. 250-257 ; ISSN: 01694332 Goudarzi, M ; Batmanghelich, F ; Afshar, A ; Dolati, A ; Mortazavi, G ; Sharif University of Technology
    Abstract
    Hydroxyapatite (HA) coatings in and onto anodized TiO2 nanotube arrays were presented and prepared by electrophoretic deposition technique (EPD). Coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). EPD proved to be an innovative and versatile technique to coat HA on and into nanotubular structures of TiO2 with enhanced adhesion between nanotubes and HA particles provided by mechanical interlocking. After EPD of HA on TiO2 layer, samples were sintered at 400 °C, 600 °C and 800 °C for 2 h in an Ar atmosphere. Effect of EPD processing parameters on thickness of the deposits and rate of deposition was elucidated for HA coatings on the nanotubular TiO2... 

    On the contact mechanics of a rolling cylinder on a graded coating. Part 1: Analytical formulation

    , Article Mechanics of Materials ; Vol. 68, issue , 2014 , p. 207-216 Alinia, Y ; Guler, M. A ; Adibnazari, S ; Sharif University of Technology
    Abstract
    In this paper, the fully coupled rolling contact problem of a graded coating/substrate system under the action of a rigid cylinder is investigated. Using the singular integral equation approach, the governing equations of the rolling contact problem are constructed for all possible stick/slip regimes. Applying the Gauss-Chebyshev numerical integration method, the governing equations are converted to systems of algebraic equations. A new numerical algorithm is proposed to solve these systems of equations. Both the coupled and the uncoupled solutions to the problem are found through an implemented iterative procedure. In Part I of this paper, the analytical formulation of the rolling contact... 

    Study plasma electrolytic oxidation process and characterization of coatings formed in an alumina nanoparticle suspension

    , Article Vacuum ; Vol. 108, issue , 2014 , p. 12-19 Sarbishei, S ; Faghihi Sani, M. A ; Mohammadi, M. R ; Sharif University of Technology
    Abstract
    Alumina-silicate composite coatings were formed on titanium substrate by plasma electrolytic oxidation (PEO) process using a silicate-based electrolyte containing alumina nanoparticles. Microstructure, chemical and phase compositions, and thickness of the coatings were investigated to determine, coating mechanism and probable reactions during the process. The effect of processing time on corrosion resistance of the coatings was investigated using the potentiodynamic polarization test. Barrier layer (TiO2) formation, micro arcs occurrence, and electrolyte ionization were the main stages of PEO coating growth process. Alumina nanoparticles were incorporated into the coating by cataphoretic and... 

    Titania nanostructured coating for corrosion mitigation of stainless steel

    , Article Protection of Metals and Physical Chemistry of Surfaces ; Vol. 50, issue. 3 , 2014 , p. 371-377 Barati, N ; Sani, M. A. F ; Sadeghian, Z ; Ghasemi, H ; Sharif University of Technology
    Abstract
    Anatase nanostructured coating has been prepared on 316 L stainless steel by sol-gel dip coating. The topography of the coatings surface has been analyzed using atomic force microscopy. The anticorrosion performance of the coatings has been evaluated using polarization curves. Effects of calcination temperature, withdrawal speed and times of coating on corrosion protection have been studied. The results showed calcination temperature of 400°C and withdrawal speed of 10 cm/min are desirable conditions to achieve high corrosion protection of 316 L stainless steel in chloride containing environments. Coatings with 3 times exhibit better resistance against corrosion in 0.5 molar NaCl solutions.... 

    Late-stage evolution of thin liquid coating films over step topographies

    , Article Advanced Materials Research ; Volume 569 , 2012 , Pages 560-563 ; 10226680 (ISSN) ; 9783037854808 (ISBN) Asgari, M ; Moosavi, A ; Sharif University of Technology
    2012
    Abstract
    Mesoscopic hydrodynamic equations are solved to investigate late-stage evolution of thin liquid films over step topographies. Different geometrical parameters including step height and initial position and configuration of resultant masses of dewetting (droplets) are probed to find their effects on the mass evolution of the system. Our results indicate that increasing the step height and locating the droplets close to the step enhance the dynamics and accelerate smaller droplet collapse