Loading...
Search for: deposits
0.015 seconds
Total 693 records

    Fabrication and Optimization of Organic Inorganic Perovskite Solar Cells Using Vapor Phase Deposition

    , Ph.D. Dissertation Sharif University of Technology Sedighi, Rahime (Author) ; Taghavinia, Nima (Supervisor) ; Tajabadi, Fariba (Supervisor)
    Abstract
    In this research, we focus on study and fabrication of organic inorganic solar cells. We use and optimize various methods such as one-step spin-coating, two-step sequential deposition and vapor-assisted solution process (VASP), to prepare high quality perovskite films. One-step deposition is simplest method for deposition of perovskite films. Although perovskite deposition by this method is very simple, the control of uniformity and surface film morphology is difficult. Chlorine inclusion, optimization of annealing conditions, and a sequential solution-based deposition method have been demonstrated to increase film coverage and uniformity. Hence, we use sequential deposition method for... 

    Fabrication and Investigation of Printing Mechanism in order to Deposit Semiconductor thin Films for Photovoltaic Devices

    , M.Sc. Thesis Sharif University of Technology Akbari, Hamid Reza (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    Finding a reliable and reproducible method to deposit thin films of semiconductors is a huge leap forward in order to fabricate nano-structured solar cells. As the third and forth generation of solar cells are based on semiconductors which are soluble in solvents and can be deposited with solution-based methods, finding a proper printing mechanics can lead to cheap solar panels. In this thesis we have designed and fabricated an apparatus to deposit lead iodide films. These thin films can be used to fabricate perovskite solar cells which are based on methylammonium lead iodide perovskite. We have also investigated different inks consisting of different additives and solvents best suited for... 

    Development of Printing Methods for Fabrication of Perovskite Solar Cells

    , M.Sc. Thesis Sharif University of Technology Shabanzade, Mostafa (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    The highest efficiency of Perovskite solar cells that is attained up to now, is around 24%. This champion solar cell is prepared under vacuum. This method suffers from low rapidity, small deposition area and high cost which are not compatible with commercialization. Printing method has a special position in mass production of electronic equipment, such as solar cells. This method has the potential of high rapid, low cast and repeatable deposition. In this thesis, I introduce a novel deposition method, named Capillary Adhesion Coating, which is based on capillary concept. The novel deposition method coats infinite perfect thinfilms with high rapidity and low cost. After the introducing of... 

    Growth of Perovskite Film based on Lead Iodide by Controlling Deposition Parameters for Solar Cells Application

    , M.Sc. Thesis Sharif University of Technology Tafazoli, Saeedeh (Author) ; Mohammadi, Mohammad Reza (Supervisor) ; Seyed Reihani, Morteza (Supervisor) ; Riahi, Nastaran (Co-Advisor)
    Abstract
    Perovskite solar cells, with high efficiency operation, have been candidated as a cost-effective and environmentally friendly technology. Despite the great progress, there are some primarily issues remained regarding to the perovskite film and its fabrication methods. A very common perovskite cell structure is FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au. Although, this structure has some advantages, lack of full surface coverage of perovskite film leads researchers to put much effort on finding other constructions. This surface inhomogeneity reduces the amount of light absorption and therefore efficiency. One way to produce a complete and uniform film is applying mixed-halide composition; such as... 

    Design and Synthesis of Supported Metal Oxide Catalysts on Activated Carbon for Removal of VOCs from Air

    , Ph.D. Dissertation Sharif University of Technology Zabihi, Mohammad (Author) ; Shaygan Salek, Jalaloddin (Supervisor) ; Khorasheh, Farhad (Supervisor)
    Abstract
    Emission of aromatic and aliphatic compounds to atmosphere is a major environmental concern for many urban societies. Catalytic oxidation of volatile organic compounds (VOCs) is an efficient and low operating cost technology for reduction of air pollution.
    First, dispersed copper oxide nano-catalysts supported on almond shell-based activated carbon were prepared for catalytic oxidation of toluene in air. The Response Surface Methodology (RSM) was used to express the catalyst removal efficiency in terms of catalyst metal loading and calcination temperature. Calcination temperature had a significant effect on the catalyst activity only at high metal loadings (upper 8% wt.). Two different... 

    Investigation of the Effect of Additive Manufacturing Process Parameters on the Geometry of Components Made of Inconel 625 by Direct Metal Deposition

    , M.Sc. Thesis Sharif University of Technology Nankali, Mobin (Author) ; Akbary, Javad (Supervisor) ; Moradi, Mahmoud (Supervisor)
    Abstract
    Additive manufacturing technology (AM) is one of the new methods of rapid prototyping. Experts claim that using this process can produce a prototype of the product with any complex geometry in the shortest possible time. Among the methods of metal additive fabrication, the direct metal layering method with the powder coaxial nozzle has different capabilities and has received much attention by researchers. In this research, we intend to find a relationship between device parameters and the geometry of samples made by direct metal layer method. According to the research, many parameters affect the quality of the samples made by this method, the most effective of which are the three parameters... 

    Growth of Two-Dimensional Molybdenum Disulfide Structures for Gas Sensing Application

    , Ph.D. Dissertation Sharif University of Technology Barzegar, Maryam (Author) ; Irajizad, Azam (Supervisor) ; Asgari, Reza (Supervisor)
    Abstract
    Molybdenum disulfide (MoS2) nanoflakes, a two-dimensional crystal with tunable bandgap depends on number of layers, is a promising candidate for future nanoelectronic devices. In the present research, flower shaped MoS2 nanoflakes have been synthesized via hydrothermal method. As part of the research, the growth of triangular MoS2 monolayer up to 10 micrometers has optimized by carring out several chemical vapor deposition experiments with varying deposition parameters. The prepared samples were characterized using optical, scanning electron, and atomic force microscopes, x-ray diffraction analysis, and Raman spectroscopy. Based on the experimental results, the growth mechanism has been... 

    Fabrication of Gas Nanosensor based on 2D Nanostructure Titanium trisulfide/Graphene Heterojunction

    , Ph.D. Dissertation Sharif University of Technology Rafiefard, Nasim (Author) ; Iraji Zad, Azam (Supervisor) ; Sasanpour, Pezhman (Supervisor) ; Esfandiar, Ali (Co-Supervisor)
    Abstract
    Titanium trisulfide (TiS3), a transition metal chalcogenide, bears the potential to replace silicon, when taking the form of nanoflakes, due to its favorable band gap and optical response. In this work, first we investigate the response of TiS3 nanoflakes to gas detection through a careful quantum computational approach and a few succinct measurements. The computations are benchmarked and compared with a relevant experiment at each step, where their results/conclusions are discussed. The most stable surface of TiS3 particles is determined to (001), in agreement with the literature. The adsorption of 5 gas molecules is characterized through formulating and estimating their adsorption... 

    Synthesis and Characterization of CdS Modified TiO2 Nanotubes for Studying of Photoelectrochemical (PEC) Properties

    , M.Sc. Thesis Sharif University of Technology Qorbani, Mohammad (Author) ; Moshfegh, Alireza (Supervisor) ; Azimirad, Rouhollah (Supervisor)
    Abstract
    In this research, first thin films with nanostructures of titanium nanotube arrays (TNAs) synthesized by anodization under different applied voltage (20- 60 V) and different reaction times (120 and 200 min). The electrolyte solution for synthesizing the samples contained 90% ethylene glycol (EG), 10% DI water, 0.1 M NHR4RF and a little HR3RPOR4R to reach the pH to 5.6. The synthesized samples crystallized under annealing treatment at 500 °C (with heating rate of 9.5 °CminP -1 P). The scanning electron microscopy (SEM) analysis was indicate that the length and the inner diameter of the nanotubes have increased from 1.6 μm and 67 nm (for 30 V anodization and for 2h) to 4.2 μm and 125 nm (for... 

    Monolithic Solar Cells with Dye or Perovskite Light Absorbent

    , Ph.D. Dissertation Sharif University of Technology Behrouznejad, Fatemeh (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    According to Iran's proper location to take advantage of solar energy and the ability of nanostructured solar cells fabrication in the country, in this study, the manufacturing problems and complexities of nanostructured solar cells such as dye solar cells and perovskite-based solar cells are investigated. The chromium metal as an alternative to the transparent conductive substrates in order to reduce the manufacturing cost of dye solar cells (DSCs) and reducing series resistance is introduced in this study. In case of utilizing chromium as a substrate for photoanode, the thickness of CrxOy layer is controlled by depositing TiO2 compact layer and the efficiency of DSC is increased from 2.6%... 

    QCM Investigation of Different Depositing Factors Effects on the Asphaltene Deposition

    , M.Sc. Thesis Sharif University of Technology Roshani, Mohammad Mahdi (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Taghikhani, Vahid (Supervisor)
    Abstract
    Asphaltene deposition, the heaviest and most polar component of crude oil, which causes great economic damage inside the reservoir, near wells, pipelines and well equipment, is an important challenge in the production of oil reservoirs. The main purpose of this study is to prob the adsorption kinetics and the mechanism of asphaltene adsorption on the metal surface by a quartz crystal microbalance device under different conditions of temperature, flow rate and degree of asphaltene instability. In this study, indirect uv-vis spectroscopic method was used to determine the onset of asphaltene precipitation, then experiments were designed using Taguchi method. A new QCM device has been designed... 

    Improving the Remediation Process of Asphaltene Deposits in the Well Facility of Koupal-Bangestan Oil Reservoir

    , M.Sc. Thesis Sharif University of Technology Bagherian, Mahmood (Author) ; Ayatollahi, Shahaboddin (Supervisor) ; Ghotbi, Cyrus (Supervisor)
    Abstract
    Crude oil production could cause the thermodynamic equilibrium of the crude oil to be disturbed in the well column which results in asphaltene precipitation and deposition. The thickness of the deposited material grows over time until it completely blocks the well column.Due to the hard and insoluble nature of deposited asphaltene, the two main chemical and mechanical methods are found to be more effective. It should be noted that the actual organic sediments in the piping are not pure and consist of three components: asphaltene, resin and paraffin. Therefore, it is very important to know the composition of the deposited material before selecting the appropriate chemical solvent.The samples... 

    Multiphysics Modeling and Magnetic Control of Powder Deposition Process in DMD Method of Additive Manufacturing Technology

    , M.Sc. Thesis Sharif University of Technology Nejati Eghteda, Sina (Author) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    Direct Metal Deposition is one of the methods of Additive manufacturing that has seen the most spread in recent years. In this method metal powder is directed towards the free surface of the workpiece through a nuzzle, and is simultaneously heated to become molten in a melting pool by a laser beam and begins the deposition process. One of the parts that make up a DMD system is powder feeding nuzzle. These nuzzles usually encounter a similar fundamental problem: that the effect of gravity on the stream of metal powder and the carrier fluid causes this stream to deviate from its intended position. To prevent this, nuzzles are usually designed with a fixed downward angle and the angle of the... 

    , M.Sc. Thesis Sharif University of Technology (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    In the preceding years, hydroxyapatite (HA)-based coatings and scaffolds have been known as the best biomaterials for dental and orthopedics applications. Biocompatible and bioactive hydroxyapatite-based Coatings on metallic implants is one of the best methods for reaching both suitable mechanical properties and appropriate bioactivity, leading to better osseointegration and osteoblast proliferation. The ultimate goal of this project is characterization as well as mechanical and electrochemical behavior investigation of Hydroxyapatite- Chitosan nanocomposite coating by electrophoretic deposition (EPD) method on Plasma Electrolyte Oxidation (PEO) treated titanium substrates and Magnesium (Mg)... 

    Microwave-Assisted Coke Resistance and Mesoporous Ni-Co Catalyst in two Steps for Methane Steam Reforming

    , M.Sc. Thesis Sharif University of Technology Etminan, Azita (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Methane steam reforming (MSR) is an assuring reaction using steam to produce H2 as clean energy over a nickel-based catalyst. We synthesized monometallic NiMgAl2O4 and bimetallic NiCoMgAl2O4 catalysts in a two-step combustion method using urea, glycine, and sucrose, as fuel. BET-BJH, XRD, TGA, TPR, FESEM, and EDX-mapping characterized surface area, porosity, morphology, crystalline structure, and metal-support interaction behavior. The products exhibited well-structured, simple MgAl2O4 spinel and NiO without NiAl2O4, in both specimens. The MSR evaluation tests at 750℃ under atmospheric pressure, CH4: H2O feed ratio of 1:1.6 showed the bimetallic catalyst has the highest conversion (99.30%)... 

    Anti-solvent-free Deposition of Perovskite Layers for Fabricating Module Scale Solar Cells

    , M.Sc. Thesis Sharif University of Technology Abdizadeh, Karim (Author) ; Nemati, Ali (Supervisor) ; Taghavinia, Nima (Supervisor)
    Abstract
    Perovskite solar cells with 25.5% efficiency and fast and cheap manufacturing process are among the most promising technologies in this field to replace silicon cells. Despite the challenges of stability and toxicity to these cells, their manufacturing technology has recently shifted to the development of large-scale manufacturing methods in module dimensions. In the present study, the fabrication of perovskite cells in large dimensions to achieve the perovskite module has been aimed and studied that to achieve this, the method of large-scale spraying and printing using the vacuum system was used to create cell-forming films and, consequently, to make the final cell and module. To... 

    Fabrication of Micron Resolution Polymer Structures with Electrohydrodynamic Printing

    , M.Sc. Thesis Sharif University of Technology Shahverdi, Mohammad (Author) ; Movahedi, Mohammad Reza (Supervisor)
    Abstract
    In recent years, additive manufacturing has been widely used in prototyping and production of industrial-commercial pieces. Additive manufacturing or three-dimensional (3D) printing is able to easily produce any piece for initial prototyping, no matter how complex it is. The fused deposition modeling (FDM) is a type of additive manufacturing process that produces the piece with the mechanism of feeding the PLA filament, then the molten polymer extrusion and depositing the fluid layer by layer with a high viscosity. Since the thickness of the layers is directly proportional to the diameter of the nozzle and the diameter of the used nozzles cannot be in the micron range (lower than 100... 

    Fabrication and Optimization of Transparent Conductive Aluminum-Doped Zinc Oxide Thin Films by Chemical Bath Deposition Method

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Sina (Author) ; Taghavinia, Nima (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    Zinc oxide is a wide band gap semiconductor material with wide applications as conductive oxides used in electro-optical devices. Thin films of doped zinc oxide (e.g. Al:ZnO, B:ZnO) are already used in thin-film solar cell technologies as electrodes. Chemical bath deposition (CBD) is a promising method for fabricating transparent and conductive ZnO layers at low temperatures (<100 °C) on nonconductive and temperature-sensitive substrates. Having a natural crystal habit, ZnO readily grows rod-like arrays when grown in an aqueous solution by CBD, posing challenges when attempting to deposit dense and conductive layers. The purpose of this study was to deposit dense and conductive zinc oxide... 

    Dynamic Modeling and Experimental Study of Asphaltene Deposition in Wellbore Considering Mechanism of Precipitation, Aggregation and Deposition

    , Ph.D. Dissertation Sharif University of Technology Salehzadeh, Marziyeh (Author) ; Ghotbi, Cyrus (Supervisor) ; Dabir, Bahram (Co-Supervisor) ; Taghikhani, Vahid (Co-Supervisor)
    Abstract
    Efforts to identify, predict, and resolve problems linked to asphaltenes and flow assurance have resulted in the development of numerous laboratory and modelling techniques. However, there has been little research on the molecular structure of asphaltenes and how it relates to solubility, stability, aggregation, and deposition behavior. Not only was a thorough structural analysis of asphaltene extracted from three samples of light, medium, and heavy oil performed in this study, but medium oil asphaltene was also fractionated into three sub-fractions based on solubility, with minimum, medium, and maximum solubility, and each subfraction was subjected to a structural analysis. All asphaltene... 

    Fabrication and Characterization of Electrochemical Properties of Porous Ni and Ni/rGO Nanocomposite by Electrochemical Deposition for Pseudocapacitor Application

    , M.Sc. Thesis Sharif University of Technology Sabzeh, Parisa (Author) ; Abachi, Parvin (Supervisor) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Fabrication of porous hybrid coatings, specially in combination with carbon compounds, can improve the electrochemical behavior of the coating. In this study, graphene oxide (GO) was first synthesized by tour method. After examining different methods to create a porous coating, the electrochemical coating method for simultaneous deposition of GO and nickel on the copper substrate was selected. CTAB was used to form nanometer porosity in the coating structure. In order to investigate the effect of GO on the properties of the deposited coating, two porous coatings of nickel (Ni) and nickel reduced-graphene oxide (Ni-rGO) were investigated by different analyzes. These analyzes include FESEM...