Loading...
Search for: dip-coating
0.007 seconds
Total 36 records

    Crack-free nanostructured BaTiO3 thin films prepared by sol-gel dip-coating technique

    , Article Ceramics International ; Vol. 40, issue. 6 , 2014 , pp. 8613-8619 Ashiri, R ; Nemati, A ; Sasani Ghamsari, M ; Sharif University of Technology
    Abstract
    In this report, crack-free nanostructured barium titanate thin films are prepared by a sol-gel processing method. Glacial acetic acid, barium acetate, titanium tetraisopropyl alkoxide, 2-propanol and deionized water are used as precursors for preparing stable precursor solution. Then very thin films (thickness=26 nm) are deposited on fused silica substrates. In order to prepare crack-free thin films of BaTiO3, much attention is given to solvent evaporation process and a controlled pre-drying process is developed. It is found that the control of the process, especially in the initial stage of drying process is crucial and important for preparation of the crack-free ultrathin nanostructured... 

    Fe doped Ni-Co spinel protective coating on ferritic stainless steel for SOFC interconnect application

    , Article International Journal of Hydrogen Energy ; Volume 38, Issue 27 , 2013 , Pages 12007-12014 ; 03603199 (ISSN) Jalilvand, G ; Faghihi Sani, M. A ; Sharif University of Technology
    2013
    Abstract
    In an attempt to reduce the oxidation and Cr evaporation rates, various protective coating layers with a nominal composition of NiCo 2-xFexO4 (x = 0, 0.5, 1) were deposited on the SUS 430 ferritic stainless steel substrate, as interconnect for solid oxide fuel cell application, by sol-gel dip coating method. Then, the coated samples were soaked at 750 C for 2.5 h in N2 and subsequently for 2.5 h in air. Phase composition and microstructure of the coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Moreover, long-term isothermal oxidation experiment and area specific resistance (ASR) measurement were also carried out on the coated samples. Results... 

    Effect of Sr and Ca dopants on oxidation and electrical properties of lanthanum chromite-coated AISI 430 stainless steel for solid oxide fuel cell interconnect application

    , Article Ceramics International ; Volume 39, Issue 7 , September , 2013 , Pages 8123-8131 ; 02728842 (ISSN) Rashtchi, H ; Sani, M. A. F ; Dayaghi, A. M ; Sharif University of Technology
    2013
    Abstract
    Lanthanum chromite coating occupies a noticeable position as a ceramic coating on metallic interconnects in solid oxide fuel cells because of its excellent electrical conductivity, high oxidation resistance and desirable chemical stability in both oxidizing and reducing atmospheres. In the present work, a sol-gel process based on the dip-coating technique was used to prepare dense and uniform coatings on metallic alloy for interconnect application (AISI 430 type). The effect of strontium and calcium doping into lanthanum chromite structure on electrical conductivity and oxidation behavior of the coated sample has been investigated. The oxidation behavior was evaluated by cyclic oxidation... 

    Effect of synthesis conditions on performance of a hydrogen selective nano-composite ceramic membrane

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 20 , October , 2012 , Pages 15359-15366 ; 03603199 (ISSN) Amanipour, M ; Safekordi, A ; Ganji Babakhani, E ; Zamaniyan, A ; Heidari, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    A hydrogen-selective nano-composite ceramic membrane was prepared by depositing a dense layer composed of SiO2 and Al2O 3 on top of a graded multilayer substrate using co-current chemical vapor deposition (CVD) method. The multilayer substrate was made by dip-coating a macroporous α-alumina tubular support by a series of boehmite solutions to get a graded structure. Using DLS analysis, it was concluded that decreasing hydrolysis time and increasing acid concentration lead to smaller particle size of boehmite sols. XRD analysis was carried out to investigate the structure of intermediate layer and an optimized calcination temperature of 973 K was obtained. SEM images indicated the formation... 

    Sol-gel derived hydroxyapatite coating on TiB 2/TiB/Ti substrate

    , Article Surface Engineering ; Volume 28, Issue 7 , August , 2012 , Pages 526-531 ; 02670844 (ISSN) Esfahani, H ; Dabir, F ; Taheri, M ; Sohrabi, N ; Toroghinejad, M. R ; Sharif University of Technology
    2012
    Abstract
    The low erosion resistance of titanium and its alloys has prevented their widespread application as joint implants. In addition, one essential requirement for the implants to bond with the living bone is the formation of a bone-like apatite on their surfaces in the host body. To enhance the erosion resistance of the surface, a diffused layer of TiB2 was formed at 1000uC on the commercial pure titanium. Hydroxyapatite was then coated on the boronised titanium by means of dip coating in a sol-gel solution. In order to confirm the biocompatibility of the specimens, they were soaked in a simulated body fluid for several days. The surface morphology of the specimens after exposure was studied by... 

    Synthesis photocatalytic TiO2/ZnO nanocomposite and investigation through anatase, wurtzite and ZnTiO3 phases antibacterial behaviors

    , Article Journal of Nano Research ; Volume 51 , 2018 , Pages 69-77 ; 16625250 (ISSN) Mohammadi, H ; Ghorbani, M ; Sharif University of Technology
    Trans Tech Publications Ltd  2018
    Abstract
    Titanium dioxide is prepared by sol gel method from titanium tetraisopropoxide (TTIP) as precursor and likewise zinc oxide is prepared by sol gel method from zinc acetate dehydrate (ZAD) as precursor. The composite sols are prepared in three different molar ratios 90TiO2:10ZnO, 70TiO2:30ZnO and 50TiO2:50ZnO. Thin film deposition is carried out by dip coating technique. Crystal structure, surface morphology and photocatalytic activity of the prepared nanocomposite thin films are investigated. The antibacterial activity of the prepared nanocomposite thin film against E-coli ATCC 25922 bacteria is examined by placing the thin film in standard aqueous E-coli medium under UV light for 1, 2, 3 and... 

    Effect of YSZ sol-gel coating on interaction of Crofer22 APU with sealing glass for solid oxide fuel/electrolysis cell

    , Article Journal of Alloys and Compounds ; Volume 847 , 20 December , 2020 Mousa Mirabad, H ; Nemati, A ; Faghihi Sani, M. A ; Fakouri Hasanabadi, M ; Abdoli, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Interactions between the metal interconnect and glass sealant in the solid oxide cells stack are critical to retaining the system integrity. To address this issue, in the current study, 8YSZ coating is applied on the Crofer22 APU steel via sol-gel and dip-coating method. Dense and continuous 8YSZ coatings are obtained on Crofer22 APU substrates. X-ray diffraction and Raman spectroscopy results show that both cubic and tetragonal structures of 8YSZ are formed. A glass-based sealing paste is applied on bare and 8YSZ coated Crofer22 APU steel. The interfacial compatibility and chemical stability of steel/glass and steel/8YSZ/glass joint couples are investigated using SEM and EDS line scan... 

    A novel low-temperature growth of uniform CuInS2 thin films and their application in selenization/sulfurization-free CuInS2 solar cells

    , Article Materials Today Communications ; Volume 26 , 2021 ; 23524928 (ISSN) Dehghani, M ; Parvazian, E ; Alamgir Tehrani, N ; Taghavinia, N ; Samadpour, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In terms of manufacturability, there is a high tendency to deposit light-absorbing CuInS2 films by solution processing methods like ink-based depositions. In particular, for nanoparticle inks, the synthesis of highly dispersed and stable inks, with uniformity in the deposition process, is a serious challenge. Here, we demonstrate a novel two-step low-temperature CuInS2 film deposition method in which the In2S3 is deposited first. It then partially is converted into CuInS2 through the infiltration of Cu+ ions in the In2S3 layer in a dip-coating process. The resulting films are highly uniform, with diffraction peaks indicating the formation of pure CuInS2 phase. The proper stoichiometry of... 

    Biodegradation behavior of polymethyl methacrylate−bioactive glass 45S5 composite coated magnesium in simulated body fluid

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 32, Issue 7 , 2022 , Pages 2216-2228 ; 10036326 (ISSN) ROUEIN, Z ; Jafari, H ; Pishbin, F ; Mohammadi, R ; Simchi, A ; Sharif University of Technology
    Nonferrous Metals Society of China  2022
    Abstract
    The biodegradation behavior of Mg, coated by polymethyl methacrylate as well as polymethyl methacrylate (PMMA)−bioactive glass (BG) composite was investigated. Electrophoretic deposition and dip coating techniques were adopted to prepare composite coating using a suspension of different percentages of the above two chemical materials. The deposited coatings were characterized using SEM, EDS, FTIR, and water contact angle measurements. Biodegradation behavior study of the coated Mg was performed using linear polarization, impedance spectroscopy, and immersion tests in simulated body fluid. The compact and homogeneous composite coating was developed as evidenced by electron microscopy results.... 

    Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles

    , Article International Journal of Environmental Science and Technology ; Volume 6, Issue 1 , 2009 , Pages 105-112 ; 17351472 (ISSN) Khanfekr, A ; Arzani, K ; Nemati, A ; Hosseini, M ; Sharif University of Technology
    CEERS  2009
    Abstract
    (Lanthanum, Cerium)(Iron, Manganese, Cobalt, Palladium)(Oxygen)3- Perovskite catalyst was prepared by the citrate route and deposited on ceramic monoliths via dip coating procedure. The catalyst was applied on a car with XU7 motors and the amount of emission was monitored with vehicle emission test systems in Sapco company. The results were compared with the imported catalyst with noble metals such as palladium, platinum and rhodium by Iran Khodro company based on the Euro III standards. The catalysts were characterized by specific surface area measurements, scanning electron microscopy, X-ray diffraction, line scan and map. In the results, obtained in the home made sample, the amount of... 

    Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation

    , Article Carbon ; Volume 47, Issue 14 , 2009 , Pages 3280-3287 ; 00086223 (ISSN) Akhavan, O ; Abdolahad, M ; Abdi, Y ; Mohajerzadeh, S ; Sharif University of Technology
    2009
    Abstract
    TiO2/multi-wall carbon nanotube (MWNT) heterojunction arrays were synthesized and immobilized on Si(0 0 1) substrate as photocatalysts for inactivation of Escherichia coli bacteria. The vertically aligned MWNT arrays were grown on ∼5 nm Ni thin film deposited on the Si by using plasma enhanced chemical vapor deposition at 650 °C. Then, the MWNTs were coated by TiO2 using dip-coating sol-gel method. Post annealing of the TiO2/MWNTs at 400 °C resulted in crystallization of the TiO2 coating and formation of Ti-C and Ti-O-C carbonaceous bonds at the heterojunction. The visible light-induced photoinactivation of the bacteria increased from MWNTs to TiO2 to TiO2/MWNTs, in which the bacteria could... 

    Persistent superhydrophilicity of sol-gel derived nanoporous silica thin films

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 2 , 2009 ; 00223727 (ISSN) Ganjoo, S ; Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2009
    Abstract
    In this investigation, sol-gel synthesized nanoporous silica thin films, annealed at different temperatures, with long time superhydrophilic property have been studied. Two kinds of sol-gel silica thin films were fabricated by dip-coating of glass substrates in two different solutions; with low and high water. The transparent coated films were dried at 100 °C and then annealed in a temperature range of 200-500 °C. The average water contact angle of the silica films prepared with low water content and annealed at 300 °C measured about 5° for a long time (6 months) without any UV irradiation. Instead, adding water into the sol resulted in silica films with an average water contact angle... 

    Surface modification of carbon steel by ZnO-graphene nano-hybrid thin film

    , Article Surface and Coatings Technology ; Volume 363 , 2019 , Pages 1-11 ; 02578972 (ISSN) Razavizadeh, O ; Ghorbani, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Application of corrosion resistant coatings is one of the most widely used means of protecting steel. Zinc coated (galvanize) steel, is well known for galvanic protection of steel substrates and nowadays, particular attention has been paid to the coupling of graphene oxide (GO) with metallic materials, in order to lessen corrosion rate. In this research, an isopropanol supercritical reducing environment prepared to make zinc ions bond directly with graphene oxides, to form a button shape hybrids of ZnO-Graphene (ZnOG). The hybridized bonding between zinc and graphene oxide is confirmed by Fourier Transform Infra-Red analysis. And the morphology revealed, using a Field Emission Scanning... 

    Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: An in vitro study

    , Article Materials Science and Engineering C ; Volume 33, Issue 4 , 2013 , Pages 2002-2010 ; 09284931 (ISSN) Abrishamchian, A ; Hooshmand, T ; Mohammadi, M ; Najafi, F ; Sharif University of Technology
    2013
    Abstract
    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%)... 

    Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications

    , Article Electrochimica Acta ; Volume 89 , February , 2013 , Pages 90-97 ; 00134686 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    A novel simple synthetic procedure for fabrication of high surface area nanostructured TiO2 electrode with uniform particles for photovoltaic application is reported. Modifying the TiO2 particulate sol by pH adjustment together with employment of a polymeric agent, so-called polymeric gel process, was developed. The polymeric gel process was used to deposit nanostructured thick electrode by dip coating incorporated in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) analysis revealed that deposited film was composed of primary nanoparticles with average crystallite size in the range 21-39 nm. Field emission scanning electron microscope (FE-SEM) images showed that deposited film... 

    Nanomechanical properties of TiO2 granular thin films

    , Article ACS Applied Materials and Interfaces ; Volume 2, Issue 9 , 2010 , Pages 2629-2636 ; 19448244 (ISSN) Yaghoubi, H ; Taghavinia, N ; Keshavarz Alamdari, E ; Volinsky, A.A ; Sharif University of Technology
    2010
    Abstract
    Post-deposition annealing effects on nanomechanical properties of granular TiO2 films on soda-lime glass substrates were studied. In particular, the effects of Na diffusion on the films' mechanical properties were examined. TiO2 photocatalyst films, 330 nm thick, were prepared by dip-coating using a TiO2 sol, and were annealed between 100 °C and 500 °C. Film's morphology, physical and nanomechanical properties were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, differential thermo-gravimetric analysis, and nanoindentation. Contrary to expectations, the maximum film hardness was achieved for 300°C annealing, with a value of 0.69 ± 0.05 GPa....