Loading...
Search for: ethylen-glycol
0.016 seconds

    Construction and Optimum Condition Selection for Microbial Fuel Cell for Organic Matter Removal and Electricity Generation

    , Ph.D. Dissertation Sharif University of Technology Hosseinpour, Mohammad Reza (Author) ; Vossoughi, Manoochehr (Supervisor) ; Alemzadeh, Iran (Supervisor)
    Abstract
    A Microbial fuel cell is a Bioreactor in which chemical bands are broken and their energy convert to electricity by bio-catalysts such as microorganisms and enzymes.In this project, construction, substrate investigation and optimization of operational parameters were done. Microbial fuel cell as a waste water treatment method was considered in this project. As a result, different substrate were used in anode chamber of constructed microbial fuel cell. The most important ones were waste water containing ethylene glycol and crude oil.Consequently, lack of information about cathode operational parameters was led to optimum condition selection for pH, buffer concentration and ionic strength as... 

    Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Organic Electrolytes

    , M.Sc. Thesis Sharif University of Technology Hamedi, Mojtaba (Author) ; Askari, Masoud (Supervisor) ; Hakim, Manochehr (Supervisor)
    Abstract
    Titanium dioxide, due to its specific semiconductive properties, has been a highly investigated material for a variety of applications including gas sensors, hydrogen generation by water photoelectrolysis, photocatalysis, dye-sensitized solar cells and purification of water and air. Several recent studies have indicated that titania nanotubes have improved properties compared to any other form of titania for mentioned application. Titania nanotubes have been produced by a variety of methods including deposition into a template and hydrothermal processes. Anodic oxidation of titanium foil in a fluoride-based solution is one of the best methods to produce of titania nanotube arrays. Highly... 

    (Feasibility Study as Obtimazation of Physical-Chemical Processes for Hydrocarbon Removal for Gas Industry Waste Water (an Ethylene Glycol Case Study

    , M.Sc. Thesis Sharif University of Technology Jalili, Behnaz (Author) ; Borghei, Mahdi (Supervisor)
    Abstract
    In this project, the feasibility of hydrocarbon waste water treatment with low concentration by physical- chemical treatment methods will be discussed. The purpose of this thesis is to investigate the feasibility of reusing the water outlet of the oil and gas refineries, in the region of ASALUYEH where there is an urgent need for water. By using activated carbon and wooden absorbent (absorption method) efficiency of this method was determined. Both coagulation and flocculation methods were investigated. To design and optimize various operating conditions on the adsorption process the RSM method was used. Temperature, residence time, feed concentration, amount of adsorbent, and adsorbent ... 

    Modification of Electrode Substrates Using Nanocomposites Including Carbon Nanomaterials and Multimetallic Nanoparticles for Electrocatalysis of some Fuel Cells Reactions

    , Ph.D. Dissertation Sharif University of Technology Rezaee, Sharifeh (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In this research, nanocomposite containing reduced graphene oxide nanosheets (RGO) and trimetallic three-dimensional (3D) Pt-Pd-Co porous nanostructures was fabricated by galvanic replacement technique. First, GO suspension was drop-casted on the electrode surface, then GO film reduction was carried out by cycling the potential in negative direction to form the RGO on GCE (RGO/GCE). Then, electrodeposition of the cobalt nanoparticles (CoNPs) as sacrificial seeds was performed onto the RGO/GCE by using cyclic voltammetry. Afterward, Pt-Pd-Co 3D porous nanostructures fabrication occurs through galvanic replacement method based on a spontaneous redox process between CoNPs and solution... 

    PVP-PEG-BaTiO3 Hydrogels, Synthesis and Characterization for Medical Applications

    , M.Sc. Thesis Sharif University of Technology Ghaed Rahmati, Hamed (Author) ; Frounchi, Masoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    Today, hydrogels have various biomedical applications as three-dimensional networks with the ability to absorb and retain water and biological fluids. This study aimed to prepare nanocomposite hydrogels from polyvinyl pyrrolidone, polyethylene glycol, and barium titanate nanoparticles. Gamma radiation at irradiation doses of 25 and 35 kGy was used as the hydrogel's crosslinking agent. The effects of gamma irradiation dose, percentage of polyethylene glycol, and barium titanate composition on the swelling ratio and gel content were investigated. It was observed that the amount of gel content with the addition of polyethylene glycol and barium titanate nanoparticles reduces the gel content and... 

    A comparative study of the electrooxidation of ethylene glycol on transition metal electrodes in alkaline solution

    , Article Journal of New Materials for Electrochemical Systems ; Volume 15, Issue 4 , 2012 , Pages 255-263 ; 14802422 (ISSN) Danaee, I ; Jafarian, M ; Shahnazi Sangachin, A. A ; Gobal, F ; Sharif University of Technology
    2012
    Abstract
    Electrodes made of group VIII and IB metals were examined for their redox process and electrocatalytic activities towards the oxidation of ethylene glycol in alkaline solutions. The method of cyclic voltammetery (CV) and Open circuit potentials measurement (OCP) was employed. It is found that considerable electrooxidation current are observed for silver and copper but lower anodic overpotential for oxidation is obtained for gold and platinum. Oxide layer produced on the surface of all electrodes in alkaline solution under anodic scan participates in ethylene glycol electrooxidation. Oxidation current observed in the reverse scans for platinum and gold are higher than those observed in... 

    Modeling of osmotic pressure of aqueous poly(ethylene glycol) solutions using the artificial neural network and free volume flory huggins model

    , Article Journal of Dispersion Science and Technology ; Volume 32, Issue 7 , 2011 , Pages 1054-1059 ; 01932691 (ISSN) Naeini, A. T ; Pazuki, G. R ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    2011
    Abstract
    In this work, the modified Flory-Huggins coupled with the free-volume concept and the artificial neural network models were used to obtain the osmotic pressure of aqueous poly(ethylene glycol) solutions. In the artificial neural network, the osmotic pressure of aqueous poly(ethylene glycol) solutions depends on temperature, molecular weight and the mole fractions of poly(ethylene glycol) in aqueous solution. The network topology is optimized and the (3-1-1) architecture is found using optimization of an objective function with batch back propagation (BBP) method for 134 experimental data points. The results obtained from the neural network in obtaining of the osmotic pressure of aqueous... 

    Ethylene glycol biodegradation in microbial fuel cell

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 38, Issue 8 , 2016 , Pages 1096-1102 ; 15567036 (ISSN) Hosseinpour, M ; Asadi, M ; Rahmani Eliato, T ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Ethylene glycol is an environmental pollutant, which exists in airport runoff and industrial waste. In this article, biodegradation of ethylene glycol in a two-chamber, batch-mode microbial fuel cell was investigated. Glucose and ethylene glycol at different concentrations were used as carbon and energy sources. Chemical oxygen demand removal in the range of 92-98% indicated that microbial fuel cell can be used for biodegradation of ethylene glycol. Ethylene glycol also improved power generation and the maximum power density was 5.72 mW/m2 (137.32 mW/m3), with respect to the same glucose and ethylene glycol concentrations (500 ppm)  

    Thermal conductivity, viscosity, and electrical conductivity of iron oxide with a cloud fractal structure

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 53, Issue 4 , 2017 , Pages 1343-1354 ; 09477411 (ISSN) Jamilpanah, P ; Pahlavanzadeh, H ; Kheradmand, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    In the present study, nanoscale iron oxide was synthesized using a hydrothermal method; XRD analysis revealed that all the produced crystals are iron oxide. FESEM microscopic imaging showed that particles are on the scale of nano and their morphology is cloud fractal. To study the laboratory properties of thermal conductivity, viscosity, and electrical conductivity of the nanoparticles, they were dispersed in ethylene glycol-based fluid and the nanofluid was in a two-step synthesis during this process. The experiments were carried out with a weight fraction between 0 and 2 % at temperatures between 25 and 45 °C. According to the results of the experiments, increasing the density of... 

    Experimental investigation of the effect of copper electrodeposition on the aluminum surface and addition of ethylene glycol on boiling heat transfer coefficient

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; 2021 ; 09477411 (ISSN) Azadi Milani, P ; Mahdi, M ; Abarghooei, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this research, the effect of surface characteristics on boiling heat transfer has been investigated experimentally. For this purpose, a device with the ability to automatically record the liquid temperature of the inlet and outlet of the test area, calculate the coefficient of boiling heat transfer, and heat flux has been developed. The automatic temperature stability of the working fluid and the ability to investigate the effect of surfaces with different characteristics (in terms of material and surface structure) on the boiling heat transfer parameters are the most important features of this device. The performance of the experimental setup was evaluated by the modified "Chen" equation... 

    Morphology and phase-controlled growth of CuInS2 nanoparticles through polyol based heating up synthesis approach

    , Article Materials Science in Semiconductor Processing ; Volume 121 , 2021 ; 13698001 (ISSN) Heidariramsheh, M ; Dabbagh, M. M ; Mahdavi, S. M ; Beitollahi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The properties of colloidal nanoparticles are the key parameters in the fabrication of inexpensive solar cells based on the solution methods. In this study, Different nanostructures of CuInS2 (CIS) were successfully synthesized by a heating-up facile polyol-based method in which, polyols including diethylene glycol (DEG), ethylene glycol (EG), and glycerol (Gly) were chosen as both the solvent and the reductant. It is found that not only the indium precursor type but also the polyol solvent are greatly effective on the size, morphology and crystal phase of this sulfide ternary composition. Briefly, the heating-up synthesis using In(acac)3 in DEG and Gly media, created nano-sized particles... 

    Experimental investigation of the effect of copper electrodeposition on the aluminum surface and addition of ethylene glycol on boiling heat transfer coefficient

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 58, Issue 5 , 2022 , Pages 801-812 ; 09477411 (ISSN) Milani, P. A ; Mahdi, M ; Abarghooei, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this research, the effect of surface characteristics on boiling heat transfer has been investigated experimentally. For this purpose, a device with the ability to automatically record the liquid temperature of the inlet and outlet of the test area, calculate the coefficient of boiling heat transfer, and heat flux has been developed. The automatic temperature stability of the working fluid and the ability to investigate the effect of surfaces with different characteristics (in terms of material and surface structure) on the boiling heat transfer parameters are the most important features of this device. The performance of the experimental setup was evaluated by the modified "Chen" equation... 

    Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo

    , Article Acta Biomaterialia ; Volume 76 , 2018 , Pages 239-256 ; 17427061 (ISSN) Behroozi, F ; Abdkhodaie, M. J ; Sadeghi Abandansari, H ; Satarian, L ; Molazem, M ; Al Jamal, K. T ; Baharvand, H ; Sharif University of Technology
    Acta Materialia Inc  2018
    Abstract
    The oxidation-reduction (redox)–responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic–hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC)... 

    Colloidal stability of dextran and dextran/poly ethylene glycol coated TiO2 nanoparticles by hydrothermal assisted sol-gel method

    , Article Ceramics International ; Volume 39, Issue 7 , 2013 , Pages 8377-8384 ; 02728842 (ISSN) Naghibi, S ; Madaah Hosseini, H. R ; Faghihi Sani, M. A ; Sharif University of Technology
    2013
    Abstract
    Colloidal stability of dextran (Dex) and Dex/poly ethylene glycol (PEG) coated TiO2 nanoparticles (NPs) were investigated. The particles were successfully synthesized by a hydrothermal assisted sol-gel technique. The results of Ultraviolet-visible (UV-vis) spectrophotometry showed that Dex and PEG additions during hydrothermal process (HTP) led to the formation of long-term (more than 60 days) stable colloids, while the addition of dispersants after HTP did not have a significant impact on the colloidal stability of NPs. X-ray diffraction (XRD) and selected area electron diffraction (SAED) analyses proved that PEG and/or Dex coated NPs had less crystallinity than the plain TiO2. Fourier... 

    Two nanostructured polymers: Polyaniline nanofibers and new linear-dendritic matrix of poly(citric acid)-block-poly(ethylene glycol) copolymers for environmental monitoring in novel biosensors

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 62, Issue 7 , Jul , 2013 , Pages 377-383 ; 00914037 (ISSN) Shamloo, A ; Vossoughi, M ; Alemzadeh, I ; Naeini, A. T ; Darvish, M ; Sharif University of Technology
    2013
    Abstract
    In this work two phenol biosensors, one based on polyaniline nanofibers (PNFs) and the other based on the newly created and introduced linear-dendritic matrix of poly(citric acid)-block-poly(ethylene glycol) copolymers (PCA-PEG-PCA), were chemically modified with horseradish peroxidase (HRP) enzyme. These phenol biosensors showed an oxidation peak at 0.55 V. The amperometric response for biosensors based on PNFs showed a linear response range from 2.5 × 10-6 to 2.5 × 10-5 mol/L, with a detection limit of 2.5 M phenol. Also, the amperometric response for a biosensor based on PCA-PEG-PCA showed a linear response range from 2.5 × 10-6 to 4 × 10-5 mol/L, with a detection limit of 1.5 M phenol  

    Dextran-graft-poly(hydroxyethyl methacrylate) gels: A new biosorbent for fluoride removal of water

    , Article Designed Monomers and Polymers ; Volume 16, Issue 2 , 2013 , Pages 127-136 ; 1385772X (ISSN) Ahmari, A ; Mousavi, S. A ; Amini Fazl, A ; Amini Fazl, M. S ; Ahmari, R ; Sharif University of Technology
    2013
    Abstract
    Synthesis of dextran-graft-poly(hydroxyethyl methacrylate) gels as a new fluoride biosorbent was considered in this work. For this propose, the Taguchi experimental design method was used for optimizing the synthetic conditions of the gels to reach high level of fluoride absorbency. The effects of three main parameters including concentrations of monomer (hydroxyethyl methacrylate), crosslinking agent (ethylene glycol dimethacrylate), and initiator (ammonium persulfate) on the final properties of the prepared gels were investigated. The proposed mechanism for grafting and chemically crosslinking reactions was proved with equilibrium water absorption, Fourier-transformed infrared, scanning... 

    Synthesis of nanocrystalline Ni/Ce-YSZ powder via a polymerization route

    , Article Materials Science- Poland ; Volume 31, Issue 3 , 2013 , Pages 343-349 ; 01371339 (ISSN) Abolghasemi, Z ; Tamizifar, M ; Arzani, K ; Nemati, A ; Khanfekr, A ; Bolandi, M ; Sharif University of Technology
    Oficyna Wydawnicza Politechniki Wroclawskiej  2013
    Abstract
    Pechini process was used for preparation of three kinds of nanocrystalline powders of yttria-stabilized zirconia (YSZ): doped with 1.5 mol% nickel oxide, doped with 15 mol% ceria, and doped with 1.5 mol% nickel oxide plus 15 mol% ceria. Zirconium chloride, yttrium nitrate, cerium nitrate, nickel nitrate, citric acid and ethylene glycol were polymerized at 80 °C to produce a gel. XRD, SEM and TEM analyses were used to investigate the crystalline phases and microstructures of obtained compounds. The results of XRD revealed the formation of nanocrystalline powder at 900 °C. Morphology of the powder calcined at 900 °C, examined with a scanning electron microscope, showed that the presence of... 

    Effect of inhibitors on the corrosion of automotive aluminum alloy in ethylene glycol-water mixture

    , Article Corrosion ; Volume 67, Issue 12 , 2011 ; 00109312 (ISSN) Asadikiya, M ; Ghorbani, M ; Sharif University of Technology
    2011
    Abstract
    The effect of some inhibitors consisting of sodium nitrite (NaNO 2), sodium nitrate (NaNO 3), sodium molybdate (Na 2MoO 4), and sodium silicate (Na 2SiO 3) on the corrosion behavior of aluminum alloy 3303 (UNS A93303) in a water and ethylene glycol (C 2H 6O 2) mixture was investigated. In the first part, the tests were established without any galvanic coupling. In the second part, the tests were established with galvanic connections between the aluminum alloy and mild steel, stainless steel, copper, brass, and solder. Results show that the best corrosion inhibitor in both situations is sodium nitrate, according to its abilities to reduce corrosion rate, passivate the aluminum surface, and... 

    Simultaneously synthesis and encapsulation of metallic nanoparticles using linear-dendritic block copolymers of poly (ethylene glycol)-poly (citric acid)

    , Article Key Engineering Materials, 8 July 2010 through 9 July 2010 ; Volume 478 , July , 2011 , Pages 7-12 ; 10139826 (ISSN) ; 9783037851357 (ISBN) Naeini, A. T ; Vossoughi, M ; Adeli, M ; Sharif University of Technology
    2011
    Abstract
    Linear-dendritic triblock copolymers of linear poly(ethylene glycol) and hyperbranched poly(citric acid) (PCA-PEG-PCA) were used as the reducing and capping agents to encapsulate gold and silver nanoparticles (AuNPs and AgNPs). PCA-PEG-PCA copolymers in four different molecular weights were synthesized using 2, 5, 10 and 20 citric acid/PEG molar ratios and were called A 1, A 2, A 3 and A 4, respectively. Nanoparticles were encapsulated simultaneously during the preparation process. AuNPs were simply synthesized and encapsulated by addition a boiling aqueous solution of HAuCl 4 to aqueous solutions of A 1, A 2, A 3 and A 4. In the case of silver, an aqueous solution of AgNO 3 was reduced... 

    Super alcohol-absorbent gels of sulfonic acid-contained poly(acrylic acid)

    , Article Journal of Polymer Research ; Volume 18, Issue 3 , 2011 , Pages 449-458 ; 10229760 (ISSN) Kabiri, K ; Lashani, S ; Zohuriaan Mehr, M. J ; Kheirabadi, M ; Sharif University of Technology
    2011
    Abstract
    Alcohol-specific superabsorbing gels (superalcogels) based on non-neutralized acrylic acid (AA, 60-94 mol%) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) were prepared via solution polymerization in water. Polyethylene glycol dimethacrylate and potassium persulfate were used as crosslinker and initiator, respectively. Characterization of samples was performed using FTIR, 1H-NMR and thermomechanical analyses. Glass transition temperature and modulus of dried samples were found to be directly changed with their AA content. The gels exhibited enormous ability for absorbing and retaining a variety of mono- and poly-hydric alcohols. For example, in lieu of one gram of a typical sample...