Loading...
Search for: heat-transfer
0.016 seconds

    A continuum–atomistic multi-scale analysis of temperature field problems and its application in phononic nano-structures

    , Article Finite Elements in Analysis and Design ; Volume 198 , 2022 ; 0168874X (ISSN) Yasbolaghi, R ; Khoei, A. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, a novel coupling technique is developed in continuum–atomistic multi-scale analysis of temperature field problems. In this manner, a new thermostat is introduced based on the single-atom sub-system, where its capability to control the temperature and produce the canonical ensemble is investigated. Moreover, the performance of proposed thermostat is verified by comparing the distribution of velocities to the Maxwell-Boltzmann distribution. The single-atom sub-system thermostat is then incorporated into the concurrent multi-scale model to relate the temperature field between the continuum and atomistic domains with complex lattice thermal fields. In order to illustrate the... 

    Optimized design of water-saving system in-slab cooling plant of Mobarakeh steel complex

    , Article Journal of Cleaner Production ; Volume 335 , 2022 ; 09596526 (ISSN) Hashemi Beni, M ; Bazofti, M. M ; Golkar, B ; Saboohi, Y ; Mokhtari, H ; Milani, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The aim of this paper is to provide a solution to decrease water consumption in the slab-cooling unit of Mobarakeh Steel Complex in Iran. The plan should give an hourly decline in water consumption during a one-year operation period to calculate the annual reduction in water consumption of the proposed process. Recommended solutions for the conversion scheme of an existing wet cooling tower to a dry or hybrid cooling system require modeling of the slab cooling process. The curves of temperature drop in slabs are extracted in this paper by modeling the transient heat transfer of the slabs in the cooling process. This will reduce the computational volume. Then, the design and optimization of... 

    Simulation of heat transfer in nanoscale flow using molecular dynamics

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 1563-1568 ; 9780791854501 (ISBN) Darbandi, M ; Abbasi, H. R ; Sabouri, M ; Khaledi Alidusti, R ; Sharif University of Technology
    2010
    Abstract
    We investigate heat transfer between parallel plates separated by liquid argon using two-dimensional molecular dynamics (MD) simulations incorporating with 6-12 Lennard-Jones potential between molecule pairs. In molecular dynamics simulation of nanoscale flows through nanochannels, it is customary to fix the wall molecules. However, this approach cannot suitably model the heat transfer between the fluid molecules and wall molecules. Alternatively, we use thermal walls constructed from the oscillating molecules, which are connected to their original positions using linear spring forces. This approach is much more effective than the one which uses a fixed lattice wall modeling to simulate the... 

    Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology

    , Article Solar Energy ; Volume 84, Issue 9 , September , 2010 , Pages 1696-1705 ; 0038092X (ISSN) Nezammahalleh, H ; Farhadi, F ; Tanhaemami, M ; Sharif University of Technology
    2010
    Abstract
    Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF).This study shows that... 

    A numerical analysis of thermal conductivity, thermal dispersion, and structural effects in the injection part of the resin transfer molding process

    , Article Journal of Porous Media ; Volume 13, Issue 4 , 2010 , Pages 375-385 ; 1091028X (ISSN) Layeghi, M ; Karimi, M ; Seyf, H. R ; Sharif University of Technology
    2010
    Abstract
    Thermal conductivity, thermal dispersion, and structural effects in resin transfer molding (RTM) process are studied numerically. The injection part of the RTM process is modeled as a transport of resin flow through a fibrous porous medium in a long rectangular channel. The fluid flow is modeled using the Darcy-Brinkman-Forchheimer model and the heat transfer process using the energy equation based on local thermal equilibrium assumption. Both isotropic and anisotropic heat transfer in porous media are investigated. The governing equations are solved numerically for the isotropic heat transfer case and analytically for the anisotropic case. The numerical results are fitted to the available... 

    Three-dimensional simulation of turbulent flow in 3-sub channels of a VVER-1000 reactor

    , Article Scientia Iranica ; Volume 17, Issue 2 B , 2010 , Pages 83-92 ; 10263098 (ISSN) Ganjiani, H ; Firoozabadi, B ; Sharif University of Technology
    2010
    Abstract
    In this study, the fluid dynamics and convective heat transfer for turbulent flows through a 3-sub channel of a rod bundle, which is representative of those used in VVER-1000, are examined. The rod bundle is constructed from parallel rods in a hexagonal array. The rods are on constant pitch by spacer grids spaced axially along the rod bundle. The geometry details of the bundle and heat flux from the fuel rod are similar to that of the Iranian nuclear reactor under construction. A numerical study using Computational Fluid Dynamics (CFD) was carried out to estimate the flow field, pressure loss and heat transfer coefficients in spacer grids and rod bundles. Turbulence has been modeled using... 

    Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape

    , Article Powder Technology ; Volume 339 , 2018 , Pages 985-994 ; 00325910 (ISSN) Nakhchi, M. E ; Esfahani, J. A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This paper presents a numerical analysis for Cu-water nanofluid flow through a circular duct inserted with cross-cut twisted tape with alternate axis (CCTA). Three dimensional (RNG) k − ϵ turbulence model is applied to simulate this problem. All simulations are performed for plain tube and nine different CCTA geometries in the range of width ratio (b/w) from 0.7 to 0.9, length ratio (s/w) from 2 to 2.5, Reynolds numbers in the range of 5000 to 15,000 and volume fraction of nanoparticles from 0 to 1.5%. The calculated results indicate that the swirl flow created by CCTA is transferred from the tube core to the near wall regions. This results in higher fluid mixing, which enhances heat... 

    Numerical investigation of fluid flow and heat transfer characteristics in parallel flow single layer microchannels

    , Article Scientia Iranica ; Volume 16, Issue 4 B , 2009 , Pages 313-331 ; 10263098 (ISSN) Asgari, O ; Saidi, M. H ; Sharif University of Technology
    2009
    Abstract
    Heat generation from Very Large-Scale Integrated (VLSI) circuits increases with the development of high-density integrated circuit technology. One of the efficient techniques is liquid cooling by using a microchannel heat sink. Numerical simulations on the microchannel heat sink in the literature are mainly two dimensional. The purpose of the present study is to develop a three-dimensional procedure to investigate flow and conjugate heat transfer in the microchannel heat sink for electronic packaging applications. A finite volume numerical code with a multigrid technique, based on an additive correction multigrid (AC-MG) scheme, which is a high-performance solver, is developed to solve the... 

    Thermo-hydro-mechanical modeling of fracturing porous media with two-phase fluid flow using X-FEM technique

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 44, Issue 18 , October , 2020 , Pages 2430-2472 Khoei, A. R ; Mortazavi, S. M. S ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this paper, a fully coupled thermo-hydro-mechanical model is presented for two-phase fluid flow and heat transfer in fractured/fracturing porous media using the extended finite element method. In the fractured porous medium, the traction, heat, and mass transfer between the fracture space and the surrounding media are coupled. The wetting and nonwetting fluid phases are water and gas, which are assumed to be immiscible, and no phase-change is considered. The system of coupled equations consists of the linear momentum balance of solid phase, wetting and nonwetting fluid continuities, and thermal energy conservation. The main variables used to solve the system of equations are solid phase... 

    Modeling of heat transfer and fluid flow during gas tungsten arc welding of commercial pure aluminum

    , Article International Journal of Advanced Manufacturing Technology ; Volume 38, Issue 3-4 , 2008 , Pages 258-267 ; 02683768 (ISSN) Farzadi, A ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    2008
    Abstract
    In the present study, the temperature and the velocity fields during gas tungsten arc welding of commercial pure aluminum were simulated using the solution of the equations of conversation of mass, energy and momentum in three dimensions and under steady-state heat transfer and fluid flow conditions. Then, by means of the prediction of temperature and velocity distributions, the weld pool geometry, weld thermal cycles and various solidification parameters were calculated. To verify the modeling results, welding experiments were conducted on two samples with different thicknesses and the geometry of the weld pool was measured. It is found that there is a good agreement between the predicted... 

    Aerothermodynamically Re-Design of an Air-Cool Heat Exchanger Fin Configuration Utilized for Cooling the Lubricating Oil of a Gas Turbine Unit Benefiting from Numerical Simulation

    , M.Sc. Thesis Sharif University of Technology Kargarian, Abbas (Author) ; Darbandi, Masoud (Co-Advisor)
    Abstract
    The lubricating oil is commonly used to cool down the moving parts of turbine gas systems. In many applications, this oil is cooled down using a recirculating water circuit. The water is then cooled down using an air-cooled heat exchanger. Any deficiency in aerothermodynamic design of such heat exchanger would result in high temperature of gas turbine moving parts such as bearings. Obviously, this mal-performance has adverse effect on the lifetime of these parts and their maintanence aspects. Since the good performance of air-cooled heat exchanger has numerous advantages for the performance of related gas turbine unit, it is mandatory to design these heat exchangers in minimum sizes and... 

    Tomography with Inverse Heat Transfer

    , M.Sc. Thesis Sharif University of Technology Haddadi, Mohammad Bagher (Author) ; Farhanieh, Bijan (Supervisor)
    Abstract
    Tomography offers a unique opportunity to unravel the complexities of the internal structure of an object without the need to invade it. There are various methods for this reason, in which all of them occupy wave or energy,ffiduction for imaging inside an object. Since the tomography plays a vital role in medicine and industry and present methods have limitation and difficulties to operate, the necessity for developing it has been inevitable. In this thesis a new tomography method has been presented in which uses inverse heat conduction for estimating unknown object with heat conductivity k2 inside a known domain with heat conductivity k 1 • For this purpose temperature is measured at... 

    Modeling of Fluid Flow and Heat Transfer at the Entrance Zone of a Partially Filled Porous Channel

    , M.Sc. Thesis Sharif University of Technology Inanloo, Saeed (Author) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    This paper numerically studies the convection heat transfer enhancement of a developing two dimensional laminar flow in a pipe partially filled with porous materials. One of the most important effects of the systems with porous materials in them, is that they can improve some heat transfer components if they be used in a proper way. This study has been performed under both local thermal equilibrium (LTE) and local thermal non-equilibrium (LTNE) conditions. Two energy equations are used in non-thermal equilibrium condition between fluid and porous material. Darcy-Brinkman-Forchheimer model is used to model the flow inside the porous medium. The effects of different parameters such as, Darcy... 

    Thermal-Hydraulic Simulation and Analysis of Two-Phase Thermal Shock in Pressurized Light Water Power Plants

    , Ph.D. Dissertation Sharif University of Technology Ghafari, Mohsen (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    As a result of fission reaction in a nuclear reactor, the produced high neutron flux would affect the material of Reactor Pressure Vessel (RPV). This neutron radiation has a detrimental impact on the mechanical properties of the RPV material such as hardening (or embrittlement) while neutrons are absorbed by the material. A major concern in embrittled RPVs is propagation of critical flaw causing through-wall cracks. Some transients leading to overcooling of RPV intensify the propagation of theses cracks and result in thermal load on RPV, known as Pressurized Thermal Shock (PTS). Such situation could be created in case of Emergency Core Cooling System (ECCS) actuation which leads to injection... 

    Thermal and Hydrodynamic Analyses of Shell and Tube Heat Exchangers in Different Flow Regimes Using Semi-Full-Scale Simulation Approaches

    , M.Sc. Thesis Sharif University of Technology Hassanpour Matikolaee, Mohammad Reza (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    One main problem in many numerical simulations is the lack of sufficient infrastructure data to precisely model and analyze the flow through complex geometries. Since experimental procedures are generally very expensive; and sometimes impossible, it becomes necessary to find alternative ways such as numerical approaches to predict the flow behavior through complex geometries. The heat exchangers can be categorized as geometries with complex configuration and apparently expensive to solve numerically. They are widely used in different industries including the aerospace. The restrictions in design and implementation of aviation’s heat exchangers have promoted the related companies to converge... 

    Developing Advanced Models to Simply Simulate the HRSG of Class F Turbine in Full Scale

    , M.Sc. Thesis Sharif University of Technology Mohammad, Ali (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Todays, heat recovery steam generator (HRSG) systems are used extensively in combined power plant cycles (consisting of Rankine cycles and Brighton gas cycle) to maximize their efficiencies. The role of HRSG is essential in providing additional energy needed in the steam cycle part. The HRSG has many pipes or harps. They recover the heat from the incoming gas from the gas turbine outlet, which may be boosted up by the duct burner unit. The main challenge in simulating heat recovery units such as tube bundles is to provide ultra-large and cost-efficient grids. In such situations, alternative models are used to simplify the simulation of the steam generator in full scale, including the... 

    Thermohydraulic Analysis of High Temperature Gas-Cooled Reactors Using Porous Media Approach

    , Ph.D. Dissertation Sharif University of Technology Tabatabai Ghomsheh, Isar (Author) ; Nouri Borojerdi, Ali (Supervisor)
    Abstract
    High temperature modular reactors (HTR) are the most likely next generation reactors that will meet future energy needs. Their inherent safety is the most attractive feature of this type of reactors, and along with that, we can mention the ease of their design, operation and maintenance. Since the reactor is safe in the event of an accident, without activating any external source of security, this reactor is considered intrinsically safe. Despite this inherent property, the reactor is only affected by its physical characteristics, and therefore, many dangerous situations are prevented.The inherent safety feature of this reactor is completely dependent on its proper design. The power density... 

    Optimization of Multi-Layered PCM Arrangement for Battery 18650 Thermal Management

    , M.Sc. Thesis Sharif University of Technology Pakravan, Shayan (Author) ; Aryanpour, Masoud (Supervisor) ; Shafie, Mohammad Behshad (Supervisor)
    Abstract
    Lithium-ion batteries have the ability to store a significant amount of energy and work at high power, which has led to the wide spread of their use in various industries. In high-power applications, battery heat management increases lifespan, safety, and reduces battery power loss. In this study, the heat management of a very common and widely used 18650 battery using multi-layered phase change material has been investigated. The reason for using multiple layers is that each phase change material has its own weaknesses in addition to its advantages. It is expected that with the proper use of several phase change materials in the thermal management system, the materials will reduce the... 

    Modelling and Simulation of Heat Transfer in the Moicrowave Sintering Process of Uranium Dioxide

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Mustafa (Author) ; Outokesh, Mohammad (Supervisor) ; Mousavian, Khalil (Supervisor)
    Abstract
    One of the steps in the production of nuclear fuel pellets used in the core of a nuclear reactor is sintering. Sintering means the consolidation of a pressed powder sample into an integrated solid. This process can be done in different ways, such as traditional sintering, microwave, spark plasma, etc. In the process of fabrication of nuclear fuel pellets, after producing uranium dioxide in powder form and making corrections on the size distribution of powder grains, it would be nolded and then sintered. In this research, the temperature evolution of the green pellets introduced to microwave heating were investigated. In this report, a brief overview of the principles of microwave heating is... 

    Upgrading and Developing The Performance of One of the Gas Turbine Engine Secondary air System Components using CFD

    , Ph.D. Dissertation Sharif University of Technology Jalali, Ramin (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Numerical three-dimensional simulation of the entire regions of a gas turbine blade, including hot gas flow over the blade surface, conduction heat transfer within the blade metal, and coolant flow through the Internal cooling System, is highly time-consuming and expensive. Therefore, one-dimensional internal flow simulation is one of the main objectives of this research to address the limitations of commercial software in predicting the temperature distribution along the cooling path. In this study, a one-dimensional in-house simulation code is developed to simulate the coolant flow inside the cooling channels of the internal cooling system of the blade. Additionally, using artificial...