Loading...
Search for: heat-transfer
0.017 seconds
Total 638 records

    Computational analysis of heat and mass transfer in a micropolar fluid flow through a porous medium between permeable channel walls

    , Article International Journal of Nonlinear Sciences and Numerical Simulation ; 2021 ; 15651339 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Nisar, K. S ; Sharif University of Technology
    De Gruyter Open Ltd  2021
    Abstract
    The present work numerically investigates the mass and heat transport flow of micropolar fluid in a channel having permeable walls. The appropriate boundary layer approximations are used to convert the system of flow model equations in ODEs, which are then numerically treated with the quasi-linearization method along with finite difference discretization. This technique creates an efficient way to solve the complex dynamical system of equations. A numerical data comparison is presented which assures the accuracy of our code. The outcomes of various problem parameters are portrayed via the graphs and tables. The concentration and temperature accelerate with the impacts of the Peclet numbers... 

    Mhd flow of cu-al2o3/water hybrid nanofluid through a porous media

    , Article Journal of Porous Media ; Volume 24, Issue 7 , 2021 , Pages 61-73 ; 1091028X (ISSN) Ahmad, S ; Ali, K ; Ashraf, M ; Sharif University of Technology
    Begell House Inc  2021
    Abstract
    Hybrid nanoliquids comprise of better physical strength, mechanical resistance, thermal conductivity, and chemical stability as equated to individual nanoliquids. In this paper, MHD hybrid nanoparticle flow with heat and mass transfer attributes is numerically investigated. Flow is taken over a stretching surface embedded in a porous medium. The governing flow model partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) using a powerful tool of similarity transformations. The relevant system of differential equations and boundary conditions are numerically treated with the successive over-relaxation (SOR) technique. Heat and mass transfer features... 

    Computational analysis of heat and mass transfer in a micropolar fluid flow through a porous medium between permeable channel walls

    , Article International Journal of Nonlinear Sciences and Numerical Simulation ; Volume 23, Issue 5 , 2022 , Pages 761-775 ; 15651339 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Nisar, K. S ; Sharif University of Technology
    De Gruyter Open Ltd  2022
    Abstract
    The present work numerically investigates the mass and heat transport flow of micropolar fluid in a channel having permeable walls. The appropriate boundary layer approximations are used to convert the system of flow model equations in ODEs, which are then numerically treated with the quasi-linearization method along with finite difference discretization. This technique creates an efficient way to solve the complex dynamical system of equations. A numerical data comparison is presented which assures the accuracy of our code. The outcomes of various problem parameters are portrayed via the graphs and tables. The concentration and temperature accelerate with the impacts of the Peclet numbers... 

    Thermal characteristics of kerosene oil-based hybrid nanofluids (Ag-MnZnFe2O4): A comprehensive study

    , Article Frontiers in Energy Research ; Volume 10 , 2022 ; 2296598X (ISSN) Ahmad, S ; Ali, K ; Haider, T ; Jamshed, W ; Tag El Din, E. S. M ; Hussain, S. M ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    Hybrid nanofluids are new and most fascinating types of fluids that involve superior thermal characteristics. These fluids exhibit better heat-transfer performance as equated to conventional fluids. Our concern, in this paper, is to numerically interpret the kerosene oil-based hybrid nanofluids comprising dissimilar nanoparticles like silver (Ag) and manganese zinc ferrite (MnZnFe2O4). A numerical algorithm, which is mainly based on finite difference discretization, is developed to find the numerical solution of the problem. A numerical comparison appraises the efficiency of this algorithm. The effects of physical parameters are examined via the graphical representations in either case of... 

    Prediction of new vortices in single-phase nanofluid due to dipole interaction

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 147, Issue 1 , 2022 , Pages 461-475 ; 13886150 (ISSN) Ahmad, S ; Cai, J ; Ali, K ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Magnetic field effects are encountered in many engineering applications which include but are not limited to metal casting, nuclear reactor coolers, and geothermal energy extraction. On the other hand, due to their outstanding thermal performance, nanofluids have been successful in obtaining acceptability as per the new generation of heat transfer fluids in automotive cooling devices, in heat exchangers, and building heating. Therefore, this research is carried out to understand how the nanofluid flow in a cavity is affected by a magnetic field (due to a dipole placed nearby). The single-phase model is employed for modeling the nanofluid, whereas the governing partial differential equations... 

    Temperature distribution on a gas turbine shaft exposed to swirl combustor flue

    , Article Journal of Thermophysics and Heat Transfer ; Volume 29, Issue 2 , 2015 , Pages 319-328 ; 08878722 (ISSN) Aghakashi, V ; Saidi, M. H ; Mozafari, A. A ; Keshavarz, P ; Sharif University of Technology
    Abstract
    A gas turbine shaft is generally exposed to high-temperature gases and may seriously be affected and overheated duetotemperature fluctuationsinthe combustion chamber. Vortex flow inthe combustion chamber may increase the heat release rate and combustion efficiency, as well as control the location of energy release. However, this may result in excessive temperature on the combustor equipment and gas turbine shaft. In this study, a new gas turbine combustion chamber implementing a liner around the shaft and the liquid-fuel feeding system is designed and fabricated. The influences of parameters such as the Reynolds number and the equivalence ratio are studied. Experimental results are compared... 

    Analysis of temperature distribution over a gas turbine shaft exposed to a swirl combustor flue

    , Article 2010 14th International Heat Transfer Conference, IHTC 14 ; Volume 5 , 2010 , Pages 183-190 ; 9780791849408 (ISBN) Aghakashi, V ; Saidi, M. H ; Ghafourian, A ; Mozafari, A. A ; Sharif University of Technology
    2010
    Abstract
    Gas turbine shaft is generally exposed to high temperature gases and may seriously be affected and overheated due to temperature fluctuations in the combustion chamber. Considering vortex flow in the combustion chamber, it may increase the heat release rate and combustion efficiency and also control location of energy release. However, this may result in excess temperature on the combustor equipments and gas turbine shaft. Vortex flow in the vortex engine which is created by the geometry of combustion chamber and conditions of flow field is a bidirectional swirl flow that maintains the chamber wall cool. In this study a new gas turbine combustion chamber implementing a liner around the shaft... 

    Turbulent decaying swirling flow in a pipe

    , Article Heat Transfer Research ; Volume 49, Issue 16 , 2018 , Pages 1559-1585 ; 10642285 (ISSN) Aghakashi, V ; Saidi, M. H ; Sharif University of Technology
    Begell House Inc  2018
    Abstract
    In this work, a solution is applied to investigate the heat transfer characteristics in a pipe with turbulent decaying swirling flow by using the boundary layer integral scheme. The governing equation is solved using the forth-order Runge-Kutta scheme resulting in thermal boundary-layer thickness and dimensionless heat transfer coefficient, namely, the Nusselt number. Both forced- and free-vortex profiles are considered for the tangential velocity component. A comparison of the results obtained for the Nusselt number with available experimental data shows that this scheme has good capability in predicting the heat transfer parameters of swirling flow especially in the entrance region of a... 

    Two-phase flow separation in axial free vortex flow

    , Article Journal of Computational Multiphase Flows ; Volume 9, Issue 3 , 2017 , Pages 105-113 ; 1757482X (ISSN) Aghaee, M ; Ganjiazad, R ; Roshandel, R ; Ashjari, M. A ; Sharif University of Technology
    Abstract
    Multi-phase flows, particularly two-phase flows, are widely used in the industries, hence in order to predict flow regime, pressure drop, heat transfer, and phase change, two-phase flows should be studied more precisely. In the petroleum industry, separation of phases such as water from petroleum is done using rotational flow and vortices; thus, the evolution of the vortex in two-phase flow should be considered. One method of separation requires the flow to enter a long tube in a free vortex. Investigating this requires sufficient knowledge of free vortex flow in a tube. The present study examined the evolution of tube-constrained two-phase free vortex using computational fluid dynamics. The... 

    The numerical investigation of the heat transport in the nanofluids under the impacts of magnetic field: applications in industrial zone

    , Article Mathematical Problems in Engineering ; Volume 2021 , 2021 ; 1024123X (ISSN) Adnan ; Khan, U ; Ahmed, N ; Mohyud-Din, S. T ; Khan, I ; Fayz-Al-Asad, M ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    The dynamics of the nanofluid flow between two plates that are placed parallel to each other is of huge interest due to its numerous applications in different industries. Keeping in view the significance of such flow, investigation of the heat transfer in the Cu-H2O nanofluid is conducted between parallel rotating plates. For more significant results of the study, the squeezing effects are incorporated over the plates that are electrically conducting. The nondimensional flow model is then treated analytically (VPM), and the results are sketched against the preeminent flow parameters. The remarkable heat transfer in the nanofluid is noticed against the Eckert and Prandtl numbers, whereas the... 

    The numerical investigation of the heat transport in the nanofluids under the impacts of magnetic field: applications in industrial zone

    , Article Mathematical Problems in Engineering ; Volume 2021 , 2021 ; 1024123X (ISSN) Adnan ; Khan, U ; Ahmed, N ; Mohyud Din, S. T ; Khan, I ; Fayz Al Asad, M ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    The dynamics of the nanofluid flow between two plates that are placed parallel to each other is of huge interest due to its numerous applications in different industries. Keeping in view the significance of such flow, investigation of the heat transfer in the Cu-H2O nanofluid is conducted between parallel rotating plates. For more significant results of the study, the squeezing effects are incorporated over the plates that are electrically conducting. The nondimensional flow model is then treated analytically (VPM), and the results are sketched against the preeminent flow parameters. The remarkable heat transfer in the nanofluid is noticed against the Eckert and Prandtl numbers, whereas the... 

    Effects of perforated anchors on heat transfer intensification of turbulence nanofluid flow in a pipe

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 141, Issue 5 , 2020 , Pages 2047-2059 Adibi, O ; Rashidi, S ; Abolfazli Esfahani, J ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    In this paper, a study is conducted to determine the influences of perforated anchors on heat transfer intensification of turbulence nanofluid flow in a pipe. Six different turbulence models are used, and the results obtained by these models are benchmarked with the existing theoretical data to select the best turbulence model. The outputs showed that the k–ε–RNG–scalable wall function model has higher accuracy and so it is selected to simulate this problem. The influences of various parameters including the addition of perforation on the anchors, the perforation diameter (in the range of 1–5 mm), the Re number (in the range of 5000–25,000), and the volumetric concentration of nanoparticles... 

    Melting process of various phase change materials in presence of auxiliary fluid with sinusoidal wall temperature

    , Article Journal of Energy Storage ; Volume 52 , 2022 ; 2352152X (ISSN) Abtahi Mehrjardi, S. A ; Khademi, A ; Ushak, S ; Alotaibi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper presents a numerical simulation approach to investigate the water effect as an auxiliary fluid in direct contact with various phase change materials (PCMs). The technique is defined as a hybrid method due to the using of an external intermediary for melting process improvement. Oleic acid (OA), coconut oil (CO), hexadecane, and heptadecane are selected as PCMs due to immiscibility in water and differences in density, melting point, and enthalpy of fusion. An auxiliary fluid is embedded above PCM in an enclosure subjected to sinusoidal wall temperature for melting rate increase through density differences improving heat transfer rate due to materials displacement during process.... 

    Experimental investigation on performance of a rotating closed loop pulsating heat pipe

    , Article International Communications in Heat and Mass Transfer ; Volume 45 , 2013 , Pages 137-145 ; 07351933 (ISSN) Aboutalebi, M ; Nikravan Moghaddam, A. M ; Mohammadi, N ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    Pulsating heat pipes (PHPs) are interesting heat transfer devices. Their simple, high maintaining, and cheap arrangement has made PHPs very efficient compared to conventional heat pipes. Rotating closed loop PHP (RCLPHP) is a novel kind of them, in which the thermodynamic principles of PHP are combined with rotation. In this paper, effect of rotational speed on thermal performance of a RCLPHP is investigated experimentally. The research was carried out by changing input power (from 25. W to 100. W, with 15. W steps) and filling ratio (25%, 50%, and 75%) for different rotational speeds (from 50. rpm to 800. rpm with an increment of 125. rpm). The results presented that at a fixed filling... 

    Surveying the hybrid of radiation and magnetic parameters on Maxwell liquid with TiO2 nanotube influence of different blades

    , Article Heat Transfer ; Volume 51, Issue 6 , 2022 , Pages 4858-4881 ; 26884534 (ISSN) Abdollahzadeh, M. J ; Fathollahi, R ; Pasha, P ; Mahmoudi, M ; Samimi Behbahan, A ; Domiri Ganji, D ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    In this paper, the impacts of Maxwell nanoliquid transmission, rectangular with titanium oxide nanoparticles are explored over the triangular, chamfer blades. The innovation of this paper is the use of the number of chamfers, rectangular, and triangular blades at the top and bottom of a stretched plate to study physical nanofluid parameters such as temperature and the effects of magnetism. Also, by determining the appropriate height and length for the blades, we achieve the best optimization of temperature and velocity of nanofluid between the plate and the blades, which improves heat transfer and with a more and better effect of magnetic effects. The finite element method is utilized for... 

    Analysis of microchannel heat sink performance for electronics cooling based on thermodynamics

    , Article 4th International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2006, Limerick, 19 June 2006 through 21 June 2006 ; Volume 2006 A , 2006 , Pages 355-362 ; 0791847608 (ISBN); 9780791847602 (ISBN) Abbassi, H ; Saidi, M. H ; Zageneh Kazemi, P ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    Present investigation analyzes the issue of entropy generation in a uniformly heated microchannel heat sink (MCHS). Analytical approach used to solve forced convection problem across MCHS, is porous medium model based on modified Darcy equation for fluid flow and two-equation model for heat transfer between solid and fluid phases. Furthermore, closed form solution of velocity distribution is employed to capture z-direction velocity gradient of flow, which plays a salient role on entropy generation through fluid flow. Analytical expressions for total and thermal entropy generation number (stems from heat transfer), and Bejan number are derived and cast into dimensionless form using velocity... 

    Numerical investigation of effects of uniform magnetic field on heat transfer around a sphere

    , Article International Journal of Heat and Mass Transfer ; Volume 114 , 2017 , Pages 703-714 ; 00179310 (ISSN) Abbasi, Z ; Molaei Dehkordi, A ; Abbasi, F ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this article, ferrohydrodynamic forced-convection heat transfer from a heated sphere embedded in a ferrofluid in the presence of the uniform external magnetic field has been studied numerically for the first time over a wide range of Reynolds number value, nanoparticle diameter, particle volume fraction, and magnetic field intensity. Despite the uniform external magnetic field applied, the internal magnetic field near the sphere could be nonuniform due to the considerable difference between the relative magnetic permeability of the sphere and the surrounding medium. Kelvin body force arises from this nonuniformity and induces vortexes near the sphere. These vortexes disturb the boundary... 

    Ferrofluid flow and heat transfer from a sphere in the presence of nonuniform magnetic fields

    , Article Journal of Heat Transfer ; Volume 141, Issue 11 , 2019 ; 00221481 (ISSN) Abbasi, Z ; Molaei Dehkordi, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2019
    Abstract
    In this article, the effects of nonuniform magnetic fields on the hydrodynamics and heat transfer from a heated sphere to its surrounding ferrofluid flow have been investigated. Kelvin body forces originate from the nonuniformity of the applied magnetic field and can generate the vortices behind the sphere leading to a considerable change in the velocity and temperature fields. The applied magnetic field disturbs the thermal boundary layer and decreases heat-transfer resistance, leading to a significant enhancement in the heat-transfer coefficient. Variations of the local and average Nusselt number value (Nu), separation angle, recirculation length, and drag coefficient were considered to...