Loading...
Search for: hydraulics
0.009 seconds
Total 337 records

    Model-based fuzzy control of a gas turbine coupled with a dynamometer

    , Article Journal of Propulsion and Power ; Volume 34, Issue 5 , 2018 , Pages 1178-1188 ; 07484658 (ISSN) Banazadeh, A ; Abdollahi Gol, H ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2018
    Abstract
    This paper discusses a novel and detailed approach for dynamic modeling and control design of a coupled hydraulic dynamometer/turbine-engine system. This study presents a comprehensive model to reveal the coupling effects and an adaptive multiobjective controller to ensure a safe and reliable operation. A fuzzy-based strategy is employed to dynamically adjust the controller gains to keep the state variables and power loading within the desirable operational limits. This approach uses the dynamometer inlet, outlet, and trim valves as well as the turbine fuel flow rate and bleed valve in order to control the system performance during the engine testing process. The proposed fuzzy control... 

    A correlated fracture network: modeling and percolation properties

    , Article Water Resources Research ; Volume 43, Issue 7 , 2007 ; 00431397 (ISSN) Masihi, M ; King, P. R ; Sharif University of Technology
    2007
    Abstract
    We present a model of fractures based on the idea that the elastic free energy due to the fracture density follows a Boltzmann distribution. The resulting expression for the spatial correlation in the displacement of fractures is used as an objective function in a simulated annealing algorithm to generate realizations of correlated fracture networks. This approach determines the appropriate statistical distribution for the fractures (e.g., length distribution) rather than imposing them as is done conventionally. The model consists of two families of parallel fractures which are perpendicular under isotropic conditions. There also exists a positive correlation between the position of... 

    Assessment of desulfurization of natural gas by chemoautotrophic bacteria in an anaerobic baffled reactor (ABR)

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 45, Issue 3 , 2006 , Pages 232-237 ; 02552701 (ISSN) Amirfakhri, J ; Vossoughi, M ; Soltanieh, M ; Sharif University of Technology
    2006
    Abstract
    The purpose of this study is to evaluate an anaerobic system (ABR) cultured by chemoautotrophic bacteria for biodesulfurization of natural gas. In this study anaerobic baffled reactor with five compartments and active volume of 10 l was used. For increasing solid retention time, reactor was packed by pumice with 0.5-2 cm diameter which active volume decreased to 9 l. Inoculation was performed by activated sludge from municipal sewage treatment, which was kept in anaerobic condition for 1 year. The synthetic wastewater which contains S2O32- ion was used in start-up and S -2 for running of ABR. Performance of the reactor was evaluated at three equivalent hydraulic retention times (HRT) of 50,... 

    Numerical modeling of flow over a dam spillway

    , Article 2006 ASME Joint U.S.- European Fluids Engineering Division Summer Meeting, FEDSM2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 1 SYMPOSIA , 2006 , Pages 343-349 ; 0791847500 (ISBN); 9780791847503 (ISBN) Saeedpanah, I ; Shayanfar, M ; Jabbari, E ; Mohammadi, M. H ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    Free surface flows are frequently encountered in hydraulic engineering problems including water jets, weirs and around gates. An iterative solution to the incompressible two-dimensional vertical steady Navier-Stokes equations, comprising momentum and continuity equations, is used to solve for the priori unknown free surface, the velocity and the pressure fields. The entire water body is covered by a unstructured finite element grid which is locally refined. The dynamic boundary condition is imposed for the free surface where the pressure vanishes. This procedure is done continuously until the normal velocities components vanish. To overcome numerical errors and oscillations encountering in... 

    Parameters affecting turbulent film cooling reynolds-averaged navier-stokes computational simulation

    , Article Journal of Thermophysics and Heat Transfer ; Volume 20, Issue 1 , 2006 , Pages 92-100 ; 08878722 (ISSN) Mahjoob, S ; Taeibi Rahni, M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2006
    Abstract
    Film cooling of surfaces appears in many applications. For instance, it is one of the most effective methods to improve the efficiency of gas turbines. As a fundamental study, two different types of film cooling (slot and discrete holes injections) are numerically simulated here. A flat surface is used to model a small portion of a gas turbine blade. Incompressible, stationary, viscous, turbulent flow is assumed using the STAR-CD software with the standard k-ε model and a cell-centered finite volume method on a nonuniform structured grid. The jet flow Reynolds number, based on the jet's hydraulic diameter, is 4.7 × 103. The study of the injection angle and the velocity ratio shows that the... 

    Treatment of olive mill wastewater by rotating biological contactor reactor

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Alemzadeh, I ; Nazemi, A ; Sharif University of Technology
    2006
    Abstract
    The removal performance of total poly phenols and orthodiphenols (o-diphenols) content in olive mill waste (OMW) was investigated with a three stages cross flow laboratory scale rotating biological contactor (RBC) in the present study. Due to high COD and other pollutant existed in the original OMW, before biological treatment of OMW by the RBC system, physico-chemical treatment was effected for COD and other pollutant reduction. Inoculation of RBC was effected by sludge from olive oil factory, and microbial acclimation was continued to 49 days and the system was adapted to about 300ppm of OMW poly phenols and o-diphenols. In biological treatment, effect of operating parameters such as... 

    A stable moving-particle semi-implicit method for free surface flows

    , Article Fluid Dynamics Research ; Volume 38, Issue 4 , 2006 , Pages 241-256 ; 01695983 (ISSN) Ataie Ashtiani, B ; Farhadi, L ; Sharif University of Technology
    2006
    Abstract
    In this paper, a mesh-less numerical approach is utilized to solve Euler's equation that is the governing equation of the irrotational flow of ideal fluids. A fractional step method of discritization is applied which consists to split each time step in two steps. This numerical method is based on moving-particle semi-implicit method (MPS) for simulating incompressible inviscid flows with free surfaces. The motion of each particle is calculated through interactions with neighboring particles covered with the kernel function. There are limitations for getting a stable solution by MPS method. In this paper, various kernel functions are considered and applied to improve the stability of MPS... 

    The effect of influent COD and upward flow velocity on the behaviour of sulphate-reducing bacteria

    , Article Process Biochemistry ; Volume 40, Issue 7 , 2005 , Pages 2305-2310 ; 13595113 (ISSN) Shayegan, J ; Ghavipanjeh, F ; Mirjafari, P ; Sharif University of Technology
    2005
    Abstract
    The effect of up velocity and influent COD concentration on the activity of sulphate-reducing bacteria (SRB) in UASB reactors is discussed. To study these effects, four UASB reactors were built and utilized in parallel. Examinations were carried out in two different concentrations of molasses (500 mg COD/l and 1000 mg COD/l) and four different upward flow velocities. It was observed that at velocities greater than 1 m/h, SRB bacteria were easily washed out from the reactors due to lower density and lack of ability to form dense and firm granules. It was found that in low-strength wastewaters with a COD to sulphate ratio of 2, an upward velocity in the range of 1.5-2.5 m/h could be... 

    A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications

    , Article Industrial Robot ; Volume 32, Issue 2 , 2005 , Pages 171-178 ; 0143991X (ISSN) Tavakoli, M ; Zakerzadeh, M. R ; Vossoughi, G. R ; Bagheri, S ; Sharif University of Technology
    2005
    Abstract
    Purpose - Aims to describe design, prototyping and characteristics of a pole climbing/manipulating robot with ability of passing bends and branches of the pole. Design/methodology/approach - Introducing a hybrid (parallel/serial) four degree of freedom (DOF) mechanism as the main part of the robot and also introduces a unique gripper design for pole climbing robots. Findings - Finds that a robot, with the ability of climbing and manipulating on poles with bends and branches, needs at least 4 DOFs. Also an electrical cylinder is a good option for climbing robots and has some advantages over pneumatic or hydraulic cylinders. Research limitations/implications - The robot is semi-industrial... 

    Floating bridge modeling and analysis

    , Article Scientia Iranica ; Volume 12, Issue 2 , 2005 , Pages 199-206 ; 10263098 (ISSN) Seif, M. S ; Paein Koulaei, R. T ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    This paper presents an overview of a study on the design and analysis aspects of the Lake Urmia Bridge in Iran. For years there have been several detailed investigations on this subject. Here, these alternatives are discussed and, then, results of analyses for a proposed solution, a floating bridge, are presented. These aspects include environmental loads, structure and the mooring system. © Sharif University of Technology  

    Prediction of Hydraulic Fracturing Technology in Naturally Fractured Rocks, by Considering Immiscible Two-phase Flow

    , Ph.D. Dissertation Sharif University of Technology Ranjbaran, Mohammad (Author) ; Taghikhani, Vahid (Supervisor) ; Ayatollahi, Shahab (Supervisor) ; Shad, Saeed (Supervisor) ; Ranjbaran, Abdolrasul ($item.subfieldsMap.e)
    Abstract
    To have a deeper understanding of Hydraulic fracturing operation, in this study four important parts in this field was developed and simulated. In the first part, continuity and momentum equations for a single phase flow in a propagating penny-shaped fracture inside an impermeable matrix was revisited based on a fixed coordinate system. Its correctness was validated against experimental data and its features were compared with the well-known lubrication theory in analytical form. The new derived continuity equation caused the fracture tip to have a positive and finite pressure while, the conventional model predicted negative infinity for that. In the second part, Finite Volume method was... 

    Impacts of Water Level Rise and Fall of a Hypersaline Lake on Seawater Intrusion: Case of Lake Urmia, Iran

    , M.Sc. Thesis Sharif University of Technology Ghazvini, Faezeh (Author) ; Ataie Ashtiani, Behzad (Supervisor)
    Abstract
    Lake Urmia located in the NW of Iran, has lost 96 percent of its volume in 20 years and become a national crisis. During this shrinkage, the lake level has fallen by 8 m, and its concentration has increased up to 380 g/l. Regarding the vast area Lake Urmia basin is covered, the hydrological characteristics of the basin varies a lot, which affects the aquifers response to the seawater intrusion. In order to study the seawater intrusion in the lake’s aquifer, 18 cases with different hydraulic gradients, hydraulic conductivities and bathymetries were defined. All of these cases were run under three different scenarios in sequence. First, steady state scenario is preformed, then the lake level... 

    Development of a Computer Code for Thermo Hydraulics Analysis of Prismatic High Temperature Gas Cooled Reactors

    , M.Sc. Thesis Sharif University of Technology Naderi, Mohammad Hossein (Author) ; Ghofrani, Mohammad Bagher (Supervisor) ; Jafari, Jalil (Supervisor)
    Abstract
    A prismatic high temperature gas-cooled reactor (HTGR), which is a graphite moderated, helium-cooled reactor, is a promising candidate for next generation nuclear power plant in that it enables applications, such as hydrogen production or process heat for petrochemical by supplying heat with core outlet temperatures as high as 1000°C. A Thermal Hydraulic Analysis Code (THAC) for gas-cooled reactors has been developed. THAC implicitly solves heat transfer equation of fuel, graphite block and helium. Three types of fuel pins were considered; solid fuel pin, fuel pins with inside holes and annular fuels with coolant flow from its inside and outside surfaces. THAC predicts axial and radial... 

    Estimation of Pressure Fluctuation Coefficient in Stilling Basins Using Computational Intelligent Models

    , M.Sc. Thesis Sharif University of Technology Mazandarani, Mahan (Author) ; Shamsai, Abolfazl (Supervisor)
    Abstract
    Hydraulic jump is a significant hydraulic phenomenon that occurs in stilling basins and causes energy dissipation of water flow. Due to the severe pressure fluctuations, cavitation, and fatigue damage to concrete materials, hydraulic jump can cause damage to the stilling basin and its related components. Therefore, studying pressure fluctuations is one of the essential topics in the safe design and operation of stilling basins. Due to the nonlinear relationship between the effective variables in the pressure fluctuation phenomenon, the use of computational intelligent models that can extract the relationship between the effective variables is necessary. In this study, laboratory data... 

    An evolvable self-organizing neuro-fuzzy multilayered classifier with group method data handling and grammar-based bio-inspired supervisors for fault diagnosis of hydraulic systems

    , Article International Journal of Intelligent Computing and Cybernetics ; Vol. 7, issue. 1 , 2014 , p. 38-78 Mozaffari, A ; Fathi, A ; Behzadipour, S ; Sharif University of Technology
    Abstract
    Purpose: The purpose of this paper is to apply a hybrid neuro-fuzzy paradigm called self-organizing neuro-fuzzy multilayered classifier (SONeFMUC) to classify the operating faults of a hydraulic system. The main motivation behind the use of SONeFMUC is to attest the capabilities of neuro-fuzzy classifier for handling the difficulties associated with fault diagnosis of hydraulic circuits. Design/methodology/approach: In the proposed methodology, first, the neuro-fuzzy nodes at each layer of the SONeFMUC are trained separately using two well-known bio-inspired algorithms, i.e. a semi deterministic method with random walks called co-variance matrix adaptation evolutionary strategy (CMA-ES) and... 

    A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique

    , Article International Journal of Fracture ; Vol. 188, issue. 1 , 2014 , p. 79-108 Khoei, A. R ; Vahab, M ; Haghighat, E ; Moallemi, S ; Sharif University of Technology
    Abstract
    In this paper, the crack growth simulation is presented in saturated porous media using the extended finite element method. The mass balance equation of fluid phase and the momentum balance of bulk and fluid phases are employed to obtain the fully coupled set of equations in the framework of u - p formulation. The fluid flow within the fracture is modeled using the Darcy law, in which the fracture permeability is assumed according to the well-known cubic law. The spatial discritization is performed using the extended finite element method, the time domain discritization is performed based on the generalized Newmark scheme, and the non-linear system of equations is solved using the... 

    Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks

    , Article Canadian Journal of Civil Engineering ; Volume 40, Issue 2 , 2013 , Pages 140-150 ; 03151468 (ISSN) Razmi, A. M ; Bakhtyar, R ; Firoozabadi, B ; Barry, D. A ; Sharif University of Technology
    2013
    Abstract
    The hydraulic efficiency of sedimentation basins is reduced by short-circuiting, circulation zones and bottom particleladen jets. Baffles are used to improve the sediment tank performance. In this study, laboratory experiments were used to examine the hydrodynamics of several baffle configurations. An accompanying numerical analysis was performed based on the 2-D Reynolds-averaged Navier-Stokes equations along with the k-ε turbulence closure model. The numerical model was supplemented with the volume-of-fluid technique, and the advection-diffusion equation to simulate the dynamics of particle-laden flow. Model predictions compared well with the experimental data. An empirical function was... 

    Influence of unsteady flow hydrograph shape on local scouring around bridge pier

    , Article Proceedings of the Institution of Civil Engineers: Water Management ; Volume 165, Issue 9 , October , 2012 , Pages 473-480 ; 17417589 (ISSN) Borghei, S. M ; Kabiri-Samani, A ; Banihashem, S. A ; Sharif University of Technology
    ICE Pub  2012
    Abstract
    Accurate estimation of scour depth is needed for economic and safe determination of bridge pier foundation depth. Most design criteria are based on maximum scour depth due to the steady design discharge without flow time limit. In this paper, the results are presented of an experimental investigation on local scouring around a single bridge pier under steady and unsteady flow regimes. For unsteady flow, triangular shape hydrographs with repeatable peaks have been chosen. Results show that both sharp and flat increases to the peak of hydrographs have a negligible effect on scour depth for the same base time. An equation is obtained to compute the scour depth due to a specific triangular... 

    Implementation of an optimal control strategy for a hydraulic hybrid vehicle using CMAC and RBF networks

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 327-334 ; 10263098 (ISSN) Taghavipour, A ; Foumani, M. S ; Boroushaki, M ; Sharif University of Technology
    2012
    Abstract
    A control strategy on a hybrid vehicle can be implemented through different methods. In this paper, the Cerebellar Model Articulation Controller (CMAC) and Radial Basis Function (RBF) neural networks were applied to develop an optimal control strategy for a split parallel hydraulic hybrid vehicle. These networks contain a nonlinear mapping, and, also, the fast learning procedure has made them desirable for online control. The RBF network was constructed with the use of the K-mean clustering method, and the CMAC network was investigated for different association factors. Results show that the binary CMAC has better performance over the RBF network. Also, the hybridization of the vehicle... 

    Discharge characteristics of a modified oblique side weir in subcritical flow

    , Article Flow Measurement and Instrumentation ; Volume 22, Issue 5 , October , 2011 , Pages 370-376 ; 09555986 (ISSN) Borghei, S. M ; Parvaneh, A ; Sharif University of Technology
    2011
    Abstract
    Side weirs are frequently used in many water projects. Due to their position with respect to the flow direction, side weirs are categorized as plain, oblique and labyrinth. One of the advantages of an oblique side weir is the increase in the effective length of the weir for overflowing and, therefore, diverting more discharge with the same channel opening, weir height and flow properties (i.e., upstream discharge, upstream Froude number and so on). In this paper, an experimental set-up of a new design of an oblique side weir with asymmetric geometry has been studied. The hydraulic behavior of this kind of oblique side weir, with a constant opening length, different weir heights and...