Loading...
Search for: hydraulics
0.013 seconds

    Hydraulic performance of labyrinth side weirs using vanes or piles

    , Article Proceedings of the Institution of Civil Engineers: Water Management ; Volume 164, Issue 5 , 2011 , Pages 229-241 ; 17417589 (ISSN) Kabiri Samani, A ; Borghei, S. M ; Esmaili, H ; Sharif University of Technology
    Abstract
    In the present study, methods for improving the hydraulic performance of labyrinth side weirs in a rectangular channel are reported based on model experimentation. For this purpose different arrangements and configurations of groups of guide vane plates and piles in the side weir flow field were tested. Experiments were conducted on labyrinth side weirs of different lengths and sill heights fitted in the test section of a rectangular glass-walled channel. Depths of flow were measured in both longitudinal and crosswise directions at regular intervals and their profiles were studied. It was found that the discharge coefficient of the labyrinth side weirs under these conditions gave... 

    Kinetics of static strain aging after temper rolling of low carbon steel

    , Article Ironmaking and Steelmaking ; Volume 38, Issue 4 , 2011 , Pages 314-320 ; 03019233 (ISSN) Koohbor, B ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    In this study, static strain aging behaviour of cold rolled steel strips was considered with emphasis on the distribution of residual hydrostatic stress developed during temper rolling. In order to assess residual stress distribution produced by the temper rolling, a three-dimensional model was first employed. Then, samples were rolled at a reduction of 4% under single and double pass rolling programmes and the kinetics of static strain aging phenomenon as well as the required activation energies were then evaluated using hardness and tensile tests on the deformed samples. Considering the predicted residual hydrostatic stress distribution, it was found that tensile hydrostatic stresses... 

    Experimental observation of the flow structure of turbidity currents

    , Article Journal of Hydraulic Research ; Volume 49, Issue 2 , 2011 , Pages 168-177 ; 00221686 (ISSN) Nourmohammadi, Z ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    The structure of turbidity currents released on a sloping bed below fresh water is investigated. Kaolin is used as a suspended material. Laboratory observations indicate that if a dense layer moves through the channel, the current thickness increases due to a hydraulic jump. This phenomenon occurs under special inlet conditions and has a significant effect on the current structure including velocity profile, current height and bed shear stress. Flows with different inlet Froude numbers based on various inlet concentrations behave more distinctly than those based on different inlet opening heights. Laboratory experiments indicate that an increase in the inlet Froude number causes an increase... 

    Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams

    , Article Computers and Geotechnics ; Volume 38, Issue 2 , March , 2011 , Pages 142-166 ; 0266352X (ISSN) Khoei, A. R ; Mohammadnejad, T ; Sharif University of Technology
    Abstract
    In this paper, a fully coupled numerical model is presented for the finite element analysis of the deforming porous medium interacting with the flow of two immiscible compressible wetting and non-wetting pore fluids. The governing equations involving coupled fluid flow and deformation processes in unsaturated soils are derived within the framework of the generalized Biot theory. The displacements of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the present formulation. The other variables are incorporated into the model using the experimentally determined functions that define the relationship between the hydraulic... 

    An ant-based rate allocation algorithm for media streaming in peer to peer networks: Extension to multiple sessions and dynamic networks

    , Article Journal of Network and Computer Applications ; Volume 34, Issue 1 , 2011 , Pages 327-340 ; 10848045 (ISSN) Goudarzi, H ; Salavati, A. H ; Pakravan, M. R ; Sharif University of Technology
    Abstract
    In this paper, we introduce a novel algorithm for rate allocation in media streaming P2P networks where multimedia contents are distributed among network members and streamed toward any requesting peer. The proposed algorithm is based on ant-colony optimization. It is capable of handling network dynamism, which is an inherent property of unstructured P2P networks. Another advantage of our algorithm is its ability to get over uncertainties in network state information, particularly the rate of supplying peers that could happen due to lack of accurate measurements. In addition, the suggested method does not rely on any information about the topology of the network. We have investigated both... 

    Optimizing OLR and HRT in a UASB reactor for pretreating high- Strength municipal wastewater

    , Article Chemical Engineering Transactions ; Volume 24 , 2011 , Pages 1285-1290 ; 19749791 (ISSN) Hazrati, H ; Shayegan, J ; Sharif University of Technology
    Abstract
    This study was carried out for examination of a lab-scale UASB reactor for optimization of organic loading rate and hydraulic retention time. The total volume of the reactor was 5 1 with an effective height of 160 cm and diameter of 5 cm. This reactor was used to treat fortified municipal wastewater at volumetric organic loadings of 3.6, 7.2, 10.8, and 14.4 kg m3 d 1 at temperature 30°C. The result of present work indicated an optimum range for organic loading (7.2 to 10.8 kg m-3 d-1) with COD removal efficiency of about 85%. Moreover, optimum HRT for influent COD concentration of 1200mg/l is shown to be only 4 hours. Furthermore nitrate removal efficiency was about 80% at optimized organic... 

    Impact of void ratio and state parameters on the small strain shear modulus of unsaturated soils

    , Article 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability ; 2015 , Pages 241-246 Khosravi, A ; Gheibi, A ; Rahimi, M ; McCartney, J. S ; Haeri, S. M
    Abstract
    The unsaturated small strain shear modulus, Gmax, is a key reference value in predicting relationships between dynamic shear modulus and shear strain amplitude and is thus a key quantity to properly model the behavior of dynamically-loaded geotechnical systems such as pavements, rail beds, and machine foundations. From the interpretation of the experimental Gmax results for unsaturated soils, different definitions of trends between Gmax and the stress state of the unsaturated soils and material properties are proposed. However, in most of trends, the relationship between the stress state and void ratio is considered and the effect of void ratio on the unsaturated small strain shear modulus... 

    High-throughput stream categorization and intrusion detection on GPU

    , Article 8th ACM/IEEE International Conference on Formal Methods and Models for Codesign, MEMOCODE 2010, 26 July 2010 through 28 July 2010 ; August , 2010 , Pages 81-84 ; 9781424478859 (ISBN) Khabbazian, M. H ; Eslamiy, H ; Totoniy, E ; Khademy, A ; Sharif University of Technology
    Abstract
    We present a design and implementation of a high-throughput deep packet inspection performing both stream categorization and intrusion detection on GPU platform using CUDA. This implementation is capable of matching 64 ethernet packet streams against 25 given regular expressions at 524 Mb/s rate on a computer system with GeForce GTX 295 graphic card  

    A practical distinguisher for the Shannon cipher

    , Article Journal of Systems and Software ; Volume 83, Issue 4 , 2010 , Pages 543-547 ; 01641212 (ISSN) Ahmadian, Z ; Mohajeri, J ; Salmasizadeh, M ; Hakala, R. M ; Nyberg, K ; Sharif University of Technology
    Abstract
    In this paper, we present a practical linear distinguisher on the Shannon stream cipher. Shannon is a synchronous stream cipher that uses at most 256-bit secret key. In the specification for Shannon, designers state that the intention of the design is to make sure that there are no distinguishing attacks on Shannon requiring less than 280 keystream words and less than 2128 computations. In this work we use the Crossword Puzzle attack technique to construct a distinguisher which requires a keystream of length about 231 words with workload about 231  

    Influence of nano-SiO2 addition on microstructure and mechanical properties of cement mortars for ferrocement

    , Article Transportation Research Record ; Issue 2141 , 2010 , Pages 15-20 ; 03611981 (ISSN) Hosseini, P ; Booshehrian, A ; Farshchi, S ; Sharif University of Technology
    Abstract
    Because of their unique physical and chemical properties, nanoparticles have been gaining increasing attention and have been used in many fields to fabricate new materials with novel functions. If nanoparticles are integrated with cement-based building materials, the new materials might possess some outstanding properties. Ferrocement is a type of thin-wall reinforced concrete commonly constructed of hydraulic cement mortar reinforced with closely spaced layers of continuous and relatively small-sized wire mesh. The low level of technical skill required to make ferrocement and the ready availability of its materials make ferrocement suitable for a wide variety of applications. This study... 

    Investigation of a nonlinear dynamic hydraulic system model through the energy analysis approach

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 11 , 2010 , Pages 2973-2979 ; 1738494X (ISSN) Afshari, H. H ; Ehramianpour, M ; Mohammadi, M ; Sharif University of Technology
    Abstract
    The dynamics of a pressure regulator valve have been studied using the through Bondgraph simulation technique. This valve consists of several elements that can transmit, transform, store, and consume hydraulic energy. The governing equations of the system have been derived from the dynamic model. In solving system equations numerically, various pressure-flow characteristics across the regulator ports and orifices have been taken into consideration. This simulation study identifies some critical parameters that have significant effects on the transient response of the system. The results have been obtained using the MATLAB-SIMULINK environment. The main advantage of the proposed methodology... 

    Effect of recycle gas composition of the performance of Fischer-Tropsch catalyst

    , Article Petroleum Science and Technology ; Volume 28, Issue 5 , 2010 , Pages 458-468 ; 10916466 (ISSN) Rohani, A. A ; Khorashe, F ; Safekordi, A. A ; Tavassoli, A ; Sharif University of Technology
    Abstract
    In this study, the influence of CO2 and CH4 on the performance and selectivity of Co-Ru/Al2O3 catalyst is investigated by injection of these gases (0-20 vol.% of feed) to the feed stream. The effect of temperature and feed flow rate are also inspected. The results show that low amounts of CO2 in the feed stream do not change the catalyst activity, but increasing the amount of CO2 (more than 10 vol.%), causes the CO conversion to decrease and the selectivity of heavy components to increase. Methane acts as an inert gas and does not affect the catalyst performance. Increasing feed flow rate has a negative effect on both CO conversion and heavy component selectivity. By raising the temperature,... 

    Shaking table test on small-scale retrofitted model of Sefid-rud concrete buttress dam

    , Article Earthquake Engineering and Structural Dynamics ; Volume 39, Issue 1 , 2010 , Pages 109-118 ; 00988847 (ISSN) Ghaemmaghami, A. R ; Ghaemian, M ; Sharif University of Technology
    Abstract
    Sefid-rud concrete buttress dam with a height of 106m was damaged during the devastating 1990 Manjil earthquake. The dam was repaired and strengthened using epoxy grouting of cracks and the installation of post-tensioned anchors. In a previous study, nonlinear seismic response of the highest monolith with empty reservoir was investigated experimentally through model testing. A geometric-scaled model of 1:30 was tested on a shaking table to study dynamic cracking of the model. As a result of the similarity between model and prototype cracking pattern, the model was retrofitted according to prototype retrofitting plan after the Manjil earthquake and re-tested on shaking table to estimate the... 

    An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model

    , Article Finite Elements in Analysis and Design ; Volume 73 , 2013 , Pages 77-95 ; 0168874X (ISSN) Mohammadnejad, T ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In this paper, a fully coupled numerical model is developed for the modeling of the hydraulic fracture propagation in porous media using the extended finite element method in conjunction with the cohesive crack model. The governing equations, which account for the coupling between various physical phenomena, are derived within the framework of the generalized Biot theory. The fluid flow within the fracture is modeled using the Darcy law, in which the fracture permeability is assumed according to the well-known cubic law. By taking the advantage of the cohesive crack model, the nonlinear fracture processes developing along the fracture process zone are simulated. The spatial discretization... 

    Effects of unsteady friction factor on gaseous cavitation model

    , Article Scientia Iranica ; Volume 17, Issue 1 B , 2010 , Pages 13-24 ; 10263098 (ISSN) Mosharaf Dehkordi, M ; Firooz Abadi, B ; Sharif University of Technology
    Abstract
    The condition known as a water-hammer problem is a transient condition that may occur as a result of worst-case loadings, such as pump failures, valve closures, etc. in pipeline systems. The pressure in the water hammer can vary in such a way that in some cases it may increase and cause destruction to the hydraulic systems. The pressure in the water hammer can also be decreased to the extent that it can fall under the saturation pressure, where cavitation appears. Therefore, the liquid is vaporized, thus, making a two-phase flow. This pressure decrease can be as dangerous as the pressure rise. As a result of the pressure drop and vaporization of the liquid, two liquid regions are separated,... 

    A fully coupled element-free Galerkin model for hydro-mechanical analysis of advancement of fluid-driven fractures in porous media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 40, Issue 16 , 2016 , Pages 2178-2206 ; 03639061 (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    Hydraulic fracturing (HF) of underground formations has widely been used in different fields of engineering. Despite the technological advances in techniques of in situ HF, the industry uses semi-analytical tools to design HF treatment. This is due to the complex interaction among various mechanisms involved in this process, so that for thorough simulations of HF operations a fully coupled numerical model is required. In this study, using element-free Galerkin (EFG) mesh-less method, a new formulation for numerical modeling of hydraulic fracture propagation in porous media is developed. This numerical approach, which is based on the simultaneous solution of equilibrium and continuity... 

    Effect of hydraulic hysteresis and degree of saturation of infill materials on the behavior of an infilled rock fracture

    , Article International Journal of Rock Mechanics and Mining Sciences ; Volume 88 , 2016 , Pages 105-114 ; 13651609 (ISSN) Khosravi, A ; Dadashi Serej, A ; Mousavi, S. M ; Haeri, S. M ; Sharif University of Technology
    Elsevier Ltd 

    On dynamic instability of a pressurized functionally graded carbon nanotube reinforced truncated conical shell subjected to yawed supersonic airflow

    , Article Composite Structures ; Volume 153 , 2016 , Pages 938-951 ; 02638223 (ISSN) Mehri, M ; Asadi, H ; Wang, Q ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    The aeroelastic flutter characteristics of a functionally graded carbon nanotube reinforced composite (FG-CNTRC) truncated conical shell under simultaneous actions of a hydrostatic pressure and yawed supersonic airflow are scrutinized. The nonlinearity in geometry of the conical shell is considered in Green–Lagrange sense and the model is derived according to the Novozhilov nonlinear shell theory. The aerodynamic pressure is modeled based on the quasi-steady Krumhaar's modified supersonic piston theory by considering the effect of the panel curvature and flow yaw angle. Parametric studies are conducted to investigate the effects of boundary conditions, semi-vertex angle, distribution and... 

    A metal organic framework-polyaniline nanocomposite as a fiber coating for solid phase microextraction

    , Article Journal of Chromatography A ; Volume 1431 , 2016 , Pages 27-35 ; 00219673 (ISSN) Bagheri, H ; Javanmardi, H ; Abbasi, A ; Banihashemi, S ; Sharif University of Technology
    Elsevier B. V 
    Abstract
    A metal organic framework-polyaniline (MOF/PANI) nanocomposite was electrodeposited on a stainless steel wire and used as a solid phase microextraction (SPME) fiber coating. The electropolymerization process was carried out under a constant deposition potential and applied to the corresponding aqueous electrolyte containing aniline and MOF particles. The employment of MOFs with their large and small cages and 3-D structures in synthesizing a nanocomposite was assumed to be efficient constitutes to induce more non-smooth and porous structures, approved by scanning electron microscopy (SEM) images. Three different MOFs were incorporated to synthesize the desired nanocomposites and the... 

    Hydraulic Behavior of Infilled Fractured Rocks under Unsaturated Conditions

    , Article Joint Geotechnical and Structural Engineering Congress 2016, 14 February 2016 through 17 February 2016 ; 2016 , Pages 1708-1718 ; 9780784479742 (ISBN) Khosravi, A ; Mousavi, S ; Dadashi Serej, A ; Sharif University of Technology
    American Society of Civil Engineers (ASCE) 
    Abstract
    Slip along fractures or hydrothermal alternation may lead to formation of weak layers of soils intercalated between the existing rock layers. In this situation, characterization of the behavior of rock fractures requires consideration of a complicated interaction of mechanical properties and geometrical characteristics of the fracture, coupled together with the properties of infill materials. Of the most important parameters which may considerably affect the behavior of an infilled fractured rock are the hydraulic properties of the infill material. These properties reflect the water retention ability of the infill material and determine the meniscus arrangements between the particles. This...