Loading...
Search for: hydrogels
0.012 seconds
Total 326 records

    Fabrication and Optimizing a Bilayer Scaffold with the Ability to Release Growth Factors in Aim to Treating Injuries in Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Seifi, Saeed (Author) ; Shamloo, Amir (Supervisor) ; Hosseini, Vahid (Supervisor)
    Abstract
    Skin, as the largest organ of the body and the first protector against external injuries, plays an important role in maintaining human health. Therefore, providing a method for complete treatment of skin lesions is very important. In the last century, tissue engineering approaches, with the introduction of skin scaffolds, have been instrumental in the process of skin tissue regeneration and treatment. The aim of the present study is to construct an optimal bilayer scaffold to mimic the two outer layer of the skin (epidermis and dermis). Besides, the effects of placenta extract on acceleration of wound healing was investigated by an in-vivo test. both layer of scaffold are porous hydrogels,... 

    Chemical Modification of Cellulose and Starch Via Two Methods: Synthesis of Their Water Soluble Derivatives & Preparation of Their Superabsorbent Hydrogels and Synthesis of Polymers with Fine Structures and Design Functional Groups by ATRP Method

    , Ph.D. Dissertation Sharif University of Technology Seidi Ghalehgah, Farzad (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Hydrogels are crosslinked hydrophilic polymers that are capable of imbedding large amounts of water or biological fluids usually to equilibrium. Because of their unique properties, these materials have become ubiquitous and indispensable materials in many applications in recent years. Synthetic methods have produced numerous hydrogel materials with excellent properties. However, their nonbiodegradability might pose long-term environmental problems and limit their use. As a consequence, various research groups have put considerable amounts of effort and resources toward development of new absorbent materials from natural polymers such as polysaccharides. In this research, new hydrogel... 

    Preparation of Porous PVA Nanocomposite Hydrogels Via Gamma Irradiation

    , M.Sc. Thesis Sharif University of Technology Sabourian, Parinaz (Author) ; Frounchi, Masoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    In this research, porous polyvinyl¬ alcohol (PVA)/Montmorillonite nanoclay and polyvinyl alcohol/polyvinyl pyrrolidone (PVP)/Montmorillonite nanoclay nanocomposite sponges (foams) were fabricated by freeze-drying method. The foams were crosslinked using gamma irradiation. The pore size and interconnectivity of nanocomposites characterized by scanning electron microscopy (SEM), showed bimodal pore size distribution resulting from preparation method.
    SEM micrographs displayed that addition of PVP ( wt% of total solid polymer) to the PVA sponges increased the pore size and interconnectivity, due to the optimal number of hydrogen bonds between functional groups of polymeric matrices.... 

    Design and Fabrication of a Microfluidic Device for the Formation of Multicellular Aggregates and Using in Tissue Engineering

    , Ph.D. Dissertation Sharif University of Technology Salehi, Sarah (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh, Siamak (Supervisor)
    Abstract
    Three-dimensional cell culture and forming multicellular aggregates is superior over traditional monolayer approaches due to better mimicking in vivo conditions and hence functions of a tissue. A considerable amount of attention has been devoted to devising efficient methods for the rapid formation of uniform sized multicellular aggregates. Restoring cartilage to healthy state is difficult due to low cell density and hence low regenerative capacity. Currently used platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, when engineering and implanting cell microaggregates in a higher concentration, new cartilage is efficiently... 

    Designing Polymeric Biomaterials based on Polysaccharides with Tissue Adhesion and Hemostasis Performance

    , M.Sc. Thesis Sharif University of Technology Shokrani, Hanieh (Author) ; Mashayekhan, Shohreh (Supervisor) ; Kordzadeh, Azadeh (Co-Supervisor)
    Abstract
    Death can be the result of severe bleeding which is associated with the loss of a high amount of blood like what happens in accidents, wars, or operations. Classic methods to stop bleeding are mostly ineffective to decrease the hemostasis time and the volume of the lost blood. A wide variety of products like powders, foams, and hydrogels have been designed and synthesized either from natural or synthetic polymers. However, limitations like weak tissue adhesion, creating a moist environment in the wound site, infection, weak biodegradation, and hemolysis still have remained. Among the existing options to be used as hemostasis agents, polysaccharides can be appropriate considering their great... 

    Investigation on Hydrophobic Particle Mobility in Electrolyte Media under Various Electrokinetic Effects

    , M.Sc. Thesis Sharif University of Technology Shafiei Souderjani, Ali (Author) ; Seeadi, Mohammad Hassan (Supervisor) ; Kazemzadeh Hannani, Siamak (Co-Supervisor)
    Abstract
    Electrophoresis of colloidal and bio-particles, which is the motion of a charged particle under an electric field, is a powerful method for the characterization and separation of particles. Electrophoresis of particles could be in electrolyte and gel mediums. Additional drag force is exerted on the particle in a gel medium due to the 3D polymeric structure. Experimental research and molecular dynamics simulations have shown that the no-slip boundary condition is not valuable for many particles in micro and nano-devices. The Navier slip condition, which represents the amount of slip, must replace the no-boundary condition. Characterization of hydrophobicity for optimal design in microfluidic... 

    Preparation of Nanocomposites Based on PVA Hydrogel with CNT Via Gamma Irradiation

    , M.Sc. Thesis Sharif University of Technology Sharifi, Meisam (Author) ; Frounchi, Masoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    Polyvinylalcohol/MWCNT nanocomposite films were fabricated via solution casting method. Glycerol was added to the polymer matrix as plasticizer in order to improve the flexibility and toughness of resultant films. Surface modification of MWCNTs were carried out by subjecting to gamma irradiation of 60Co source to total doses of 50.0 and 75 kGy in pure ethanol and in a solution with equal volume fraction of water and ethanol. The produced nanocomposites in each case which contain different type of modified MWCNTs were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), mechanical and electrical measurements. The... 

    Fabrication of in Situ Forming Hydrogels Composed of Acellular Cartilage Matrix with Improved Mechanical Properties for Recovery of Local Damages in Articular Cartilage

    , M.Sc. Thesis Sharif University of Technology Shojarazavi, Nastaran (Author) ; Mashayekhan, Shohreh (Supervisor) ; Hassanzadeh, Zabihollah (Co-Supervisor)
    Abstract
    Since cartilage has limited self-regeneration, in-situ forming hydrogels can act as an ideal scaffold for cartilage tissue engineering to fill the defect gap due to their ability to homogeneously encapsulate the desired cells, efficient mass transfer and minimally invasive characteristics. In this project, an injectable hydrogel with improved structure by adding silk fibroin (SF) nanofibers and better biochemical properties by employing the cartilage extracellular matrix (ECM) was fabricated. The in-situ forming hydrogel is consisted of different concentrations of ionic crosslinked alginate incorporated with different concentrations of SF nanofibers and 1% w/v enzymatically crosslinked... 

    Design and Manufacture of a Scaffold with a Drug Delivery System for a Better Tissue Wound Healing Process

    , M.Sc. Thesis Sharif University of Technology Shaygani, Hossein (Author) ; Shamloo, Amir (Supervisor) ; Aryanpour, Masoud (Supervisor)
    Abstract
    Articular cartilage is devoid of blood vessels, lymphatics, and nerves which gives it a very limited intrinsic healing and repair capabilities. Being under constant harsh biomechanical environment, makes maintaining the health of articular cartilage a vital principle in having healthy joints. Tissue engineering as a method for regeneration of damaged tissue have attracted a lot of attention. Articular cartilage engineered scaffolds act as a macro scale drug delivery system which in addition to having a good mechanical properties similar to that of cartilage tissue, have to provide a highly porous environment for cell migration and proliferation. The aim of this study is to fabricate a drug... 

    Synthesis of Novel Biodegradable Collagen-Based Superabsorbent Hydrogels and Investigation of their Swelling Behavior in Various Media

    , Ph.D. Dissertation Sharif University of Technology Salimi,Hamid (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    The use of super-swelling polymers is steadily increasing and the applications in industry are continuing to grow. With the authorization of the superabsorbents in food packaging by the Food and Drug Administration recently, demand may soon take off in the market. The worldwide production of SAPs is more than one million tons per year, representing a multibillion-dollar market. However, the increase in prices of petroleum products in recent years may be a drawback for these acrylic-based materials. Thus, there is now a need to develop natural-based super-swelling hydrogels which are more economical and environment friendly. In addition, the super-swelling gels are promising novel functions... 

    Design and Manufacture of Polymeric Nanocomposite in Order to Control the Production and Migration of Sand in Reservoirs

    , Ph.D. Dissertation Sharif University of Technology Saghandali, Farzin (Author) ; Taghikhani, Vahid (Supervisor) ; Baghban Salehi, Mahsa (Supervisor)
    Abstract
    Sand production from oil reservoirs leads to various problems, such as well productivity reduction, operating equipment corrosion, and increased production costs. Therefore, controlling sand production in unconsolidated reservoirs is crucial for operating companies. Chemical injection into the formation in order to strengthen and reduce sand production is one of the most important methods of sand control. In this study, a hydrogel nanocomposite was designed and its effectiveness in sand control was investigated. Various tests were carried out to define and assess its efficacy, as follows: Morphological tests demonstrated the creation of a dense, homogeneous, and porous structure. Structural... 

    Development of an Optimized Skin Scaffold Capable of Growth Factor Release for Acute Skin Wound Healing

    , M.Sc. Thesis Sharif University of Technology Sarmadi, Morteza (Author) ; Shamloo, Amir (Supervisor) ; Firoozbakhsh, Keykhosrow (Supervisor)
    Abstract
    As the first barrier in front of external damages, skin is prone to the largest number of damages applied to one’s body. Acute wounds are considerably prevalent world-widely, imposing very high costs to governments. The purpose of the current project, is to propose a novel skin scaffold capable of growth factor delivery for enhancing the wound healing process in acute wounds. Such a scaffold should be able to decrease the required time for healing process, also to improve the quality of the regenerated skin compared to available commercial products. Furthermore, it should be highly biocompatible, biodegradable, and non-toxic. In this project, to manufacture the artificial skin scaffold, a... 

    Synthesis and in Vitro/in Vivo Evaluation of Bioprinted and Core-Shell Systems Containing Proteoglycan Nanoparticle and Growth Factor for Skin Tissue Regeneration

    , Ph.D. Dissertation Sharif University of Technology Zandi, Nooshin (Author) ; Simchi, Abdolreza (Supervisor) ; Shokrgozar, Mohammad Ali (Supervisor) ; Tamjid, Elnaz (Co-Supervisor)
    Abstract
    Tissue engineering has the potential to revolutionize our health care system. Conceptually, lost or malfunctioning tissues will be replaced by man-made biological substitutes to restore, maintain, or improve function. Tissue engineering has already shown great promise to contribute to treatments of a myriad of diseases including osteoarthritis, cancer, diabetes, skin burns, cardiovascular conditions and various traumatic injuries. Tissue engineering is a highly multidisciplinary discipline that demands integration of knowledge, tools and skills from biology, chemistry, engineering and medicine. Integrating nano- and microtechnologies into clinically sized implants represents a major... 

    Comparing Effects of Natural Antibiotics and Anti Bacterial Materials in Burn Wound Infections with Nanoparticles and Skin Scaffold

    , M.Sc. Thesis Sharif University of Technology Ramezani, Bita (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Supervisor)
    Abstract
    Burns are one of the most important accidents related to human health. Due to the intense physical and mental complications and high fatality rate associated with them, receiving proper treatment is of paramount importance. The control of infection in wounds would cure and eliminates the effect of wounds and treatment of skin lesions with engineered scaffolds can be an effective method. The purpose of this project is proposing a hydrogel scaffold based on natural polymers of oxidized alginate and gelatin loaded with an herbal drug to control infection and treat burn wounds. For this purpose, the Iranian Oak extract that it's main content is Tanin and PolyPhenolinc materials, was prepared and... 

    The Study on Relationship between Viscoelastic Properties and Drug Release of Wound Dress Polyvinyl Alcohol Hydrogel

    , M.Sc. Thesis Sharif University of Technology Rezvan, Gelareh (Author) ; Bagheri, Reza (Supervisor) ; Pircheraghi, Gholamreza (Supervisor)
    Abstract
    Wound is a defect or failure in the skin texture which occurs as a result of physical or heat injuries or physiological conditions. The wound dress as a temporary cover can improve wound healing process and due to the unique properties, hydrogels have become appropriate choice for this application. Hydrogel’s structure allows drug to be loaded in the wound dress. Hydrogel wound dress should have adequate fluidity to cover wound’s bed and make full contact with the skin. Sufficient cohesion and strength is also necessary to allow the wound dress to remove from wound completely. Therefore, the study on the viscoelastic properties of hydrogel is important. In this study, polyvinyl alcohol... 

    Synthesis and Characterization of Tough and Self-healing Nanocomposite Hydrogels of Poly-acrylamide/Alginate

    , M.Sc. Thesis Sharif University of Technology Rezaei, Mahyar (Author) ; Pircheraghi, Gholamreza (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    Hyderogels are hydrophilic polymers with three dimensional network structure, due to their high water absoption, their application to life and industry is increasing from day to day, such as tissue engineering, actuators and sensors, drug delivery and therapeutic treatment. In this project, it has been attempted to produce polyacrylamide/alginate double network hydrogels with the use of graphene oxide nanosheets to indicate that it is possible to combine toughness and self-healing in a hydrogel with the opposite nature of each other. To evaluate mechanical properties, uniaxial tensile test and loading-unloading test were used. The results indicate that increase the weight ratio of acrylamide... 

    Stem Cell Proliferation and Differentiation in Bioreactors

    , M.Sc. Thesis Sharif University of Technology Rezaei, Maryam (Author) ; Vosoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor)
    Abstract
    In this study, differentiation of rabbit embryonic-derived mesenchymal stem cells to osteogenic cells has been characterized. Bone tissue engineering is based upon the understanding of bone tissue construct and it’s formation in-vivo, and the Preparation of tissue engineered bone constructs to repair large size defects is it’s major goal. We sought to investigate the combined effect of three elemnts of tissue engineering: cells, scaffolds and growth factors. Mesenchymal stem cells are unspecialized cells which due to their unlimited self-renewal capacity and the remarkable ability to differentiate along multiple linage pathways are natural choice for application in tissue repair and... 

    Design and Fabrication of Hydrogel Microcarrier for Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Radaei, Payam (Author) ; Mashayekhan, Shohre (Supervisor) ; Yaghmaei, Soheila (Supervisor)
    Abstract
    Microcarriers (MCs) are an attractive technology with various applications in tissue engineering. In this study, chitosan/gelatin MCs were fabricated with blends of different ratio of chitosan/gelatin, by using a setup containing high voltage electrostatic field and syringe pump. Optimization of blend ratio, voltage and syringe pump flow carried out by the “Design expert” software leads to fabrication of MCs with constant diameter while having various elasticity. Mechanical strength and elasticity of MCs were determined. Human umbilical cord mesenchymal stem cells (hUCMSCs) were cultured on MCs dynamically by using mini-rocher in an incubator. Cells adhesion on MCs were successfully shown by... 

    Development of a Polymeric Scaffold for Periodontal Regeneration

    , M.Sc. Thesis Sharif University of Technology Rahimi Nasrabadi, Kosar (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    Periodontitis is a common inflammatory disease that affects the periodontium.Periodontium includes two hard tissues of cementum and alveolar bone and also soft tissue of periodontal ligament. The appropriate function is based on the consistency and accurate interaction of them. The complex structure, the low potential of the body for spontaneous healing, and technical problems such as bacteria accumulation, limited access, and small operating field cause no complete treatment can be achieved until now.In this project, at first collagen type I was extracted from Bovine Achilles tendon. Then, polymer modification was done to 39.95 µg/mg (Tyramine/ Collagen). An In situ gel based on modified... 

    Fabrication of Stretchable, Skin-like and Conductive Hydrogel Based on Cellulose Nanocrystal As a Strain Sensor Monitoring Human Motions

    , Ph.D. Dissertation Sharif University of Technology Rahmani, Pooria (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    Hydrogels are of growing interest for fabrication of wearable strain sensors due to their intrinsic ionic conductivity, flexibility, and biocompatibility. Herein, to improve the mechanical properties of hydrogels, conventional covalent crosslinking is replaced with novel physical cross-linking. First, the microstructure and properties of pure hydrogel is optimized. Then, Cellulose nanocrystal (CNC) is added to the optimized gel to reinforce it. Finally, through a sequential strategy, aniline monomers are diffused into the gel network and are in-situ polymerized accordingly, providing high conductivity of 21.7 S/m. The resulting hydrogel has the stretchability of 2500% and the toughness of...