Loading...
Search for: ions
0.015 seconds

    The effect of Ag incorporation on the characteristics of the polymer derived bioactive silicate phosphate glass-ceramic scaffolds

    , Article Boletin de la Sociedad Espanola de Ceramica y Vidrio ; Volume 61, Issue 6 , 2022 , Pages 653-663 ; 03663175 (ISSN) Paryab, A ; Godary, T ; Khalilifard, R ; Malek Khachatourian, A ; Abdollahi, F ; Abdollahi, S ; Sharif University of Technology
    Sociedad Espanola de Ceramica y Vidrio  2022
    Abstract
    In the bone tissue engineering field (BTE), it is of significant importance to develop bioactive multifunctional scaffolds with enhanced osteoconductivity, osteoinductivity, and antibacterial properties required for lost bone tissue regeneration. In this work, a bioactive glass-ceramic scaffold was manufactured via a novel polymer-derived ceramics (PDC) manufacturing method. To gain antibacterial properties, the silver ions were incorporated in controlled amount along with other precursors in the PDC processing stage. Microstructural and structural properties of the fabricated silicate-phosphate glass-ceramic scaffold were evaluated by scanning electron microscopy (SEM) equipped with energy... 

    Recent advances on dual-functional photocatalytic systems for combined removal of hazardous water pollutants and energy generation

    , Article Research on Chemical Intermediates ; Volume 48, Issue 3 , 2022 , Pages 911-933 ; 09226168 (ISSN) Naseri, A ; Asghari Sarabi, G ; Samadi, M ; Yousefi, M ; Ebrahimi, M ; Moshfegh, A. Z ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Photocatalytic wastewater treatment and concurrent energy production or metal ions conversion to less harmful products have great potential to address both environmental and energy challenging issues, two of the most significant problems facing humankind. Many efforts have been devoted for achieving enhanced photocatalytic activity as well as optimizing reaction conditions and materials design. In this context, various strategies were applied to develop efficient dual-functional photocatalysts for environmental purification and simultaneous energy production. Concurrent photocatalytic degradation of organic pollutants and Cr(VI) reduction to less toxic Cr(III) improved the rate of both... 

    Magnetic, structural, optical band alignment and conductive analysis of graphene-based REs (Yb, Gd, and Sm) doped NiFe2O4 nanocomposites for emerging technological applications

    , Article Synthetic Metals ; Volume 284 , 2022 ; 03796779 (ISSN) Akhtar, M. N ; Yousaf, M ; Lu, Y ; Mahmoud, M. Z ; Iqbal, J ; Khan, M. A ; Khallidoon, M. U ; Ullah, S ; Hussien, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The productive and straightforward strategy was developed to fabricate graphene based NiFe2O4 doped rare-earth (RE) ions nanocomposites for enhancing the magnetic and structural characteristics of ferrites. RE nanoparticles (NPs) such as Yb3+, Gd3+ and Sm3+ were doped in NiFe2O4 ferrite structure via sol-gel auto-combustion method and hydrothermal method was utilized to fabricate their graphene-based nanocomposites. The weight loss and decomposition of the nanocomposites were determined using temperature-dependent thermo gravimetric analysis (TGA/DTA). The single-phase structure of the NiFe2O4, NiFe2O4/G, Yb doped NiFe2O4/G, Gd doped NiFe2O4/G, and Sm doped NiFe2O4/G nanocomposites was... 

    Simple SPR-based colorimetric sensor to differentiate Mg2+ and Ca2+ in aqueous solutions

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 268 , 2022 ; 13861425 (ISSN) Amirjani, A ; Salehi, K ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    L-tryptophan functionalized AgNPs were successfully fabricated using a one-pot synthesis method and assessed as a colorimetric probe for rapid and accurate determination of Mg2+ ions. The developed sensor showed a selective response towards Mg2+ with no interference from Ca2+ in the wide concentration range of 1–200 µM. The sensor's response was optimized in the pH range of 9–10, which can be attributed to the protonation of amine groups and their interaction with Mg2+ ions. The stability and selectivity of the sensor were examined in different salt (NaCl) and other metal ions, respectively. The L-tryptophan-AgNPs sensor detected Mg2+ with the limit of detection of 3 µM, which is way lower... 

    Hydrothermal carbonization of digested sewage sludge coupled with Alkali activation: Integrated approach for sludge handling, optimized production, characterization and Pb(II) adsorption

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 133 , 2022 ; 18761070 (ISSN) Malool, M. E ; KeshavarzMoraveji, M ; Shayegan, J ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2022
    Abstract
    Background: Integrated sewage sludge handling and heavy metal management are important issues that scientists are working to solve today. Methods: Hydrothermal carbonization of dewatered digested sewage sludge (DDSS) under various conditions is carried out in this work, followed by alkali activation. The response surface methodology is used to investigate the operating process conditions and optimize them in order to produce hydrochar with the highest modified adsorption capacity (yield and Pb2+ adsorption). Significant Findings: The ideal conditions are 182.4°C, 4.9 hours, 5.025 (w/w) water/DDSS ratio, and 3.5 (w/w) ZnCl2/DDSS ratio. In addition, the Langmuir isotherm (qmax =109.3 mg/g) and... 

    UiO-66 metal–organic frameworks in water treatment: A critical review

    , Article Progress in Materials Science ; Volume 125 , 2022 ; 00796425 (ISSN) Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Tajahmadi, S ; Bahi, A ; Ko, F ; Aminabhavi, T. M ; Li, J. R ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal-organic frameworks (MOFs) have recently achieved much attention to eliminating toxic pollutants because of their attractive attributes, including large specific surface area, ultra-high porosity, abundant active adsorption sites, tunable surface chemistry, well-controlled pore size distribution, and strong host–guest interactions. Among the many developed MOFs, the Zr-based MOFs, particularly the UiO-66 family, are considered extremely attractive for wastewater treatment applications. The fascinating properties of UiO-66 such as high thermal stability, superior chemical resistance towards several solvents, including benzene, acetone, different alcohols, dimethylformamide, acidic and... 

    New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction

    , Article Electrochimica Acta ; 2022 , Volume 436 ; 00134686 (ISSN) Moradi, M ; Hasanvandian, F ; Bahadoran, A ; Shokri, A ; Zerangnasrabad, S ; Kakavandi, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Developing extremely efficient electrocatalysts for oxygen evolution reactions (OER) is a decisive step toward the progression of rechargeable metal-oxygen batteries, CO2 reduction, and water-splitting. Nanoporous high-entropy transition-metal sulfides (np-HETMS) represent a new generation of promising OER catalysts by virtue of their exceptional catalytic activity. However, their synthesis maintains to be a challenge by reason of the thermodynamic immiscibility of the constituting multi-principal metallic elements in the sulfide structure. Herein, for the first time, the np-HETMS ((CoFeNiMnCu)S2) nanoparticles with pyrite-phase was synthesized via a facile and easy adaptable... 

    Ferric metformin drug complex supported on magnetic nanofiber cellulose; An efficient access to 4-H pyrans derivatives and determination of their antimicrobial activity

    , Article Synthetic Communications ; Volume 52, Issue 7 , 2022 , Pages 974-993 ; 00397911 (ISSN) Matloubi Moghaddam, F ; Daneshfar, M ; Moghimi, H ; Daneshfar, Z ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Magnetic nanofiber cellulose (NFC) was selected as a biopolymer surface for the reaction with ferric metformin and a novel nanocatalyst was prepared. This green heterogeneous organometallic catalyst was analyzed by physiochemical techniques. The new metformin drug complex supported on magnetic NFC was used as a powerful and efficient catalyst for the synthesis of functionalized 4H-pyrans derivatives. The antimicrobial activity of the products showed excellent activity against all the bacterial and fungal strains (especially compounds 7q and 6r). © 2022 Taylor & Francis Group, LLC  

    Cu2ZnSnS4 as a hole-transport layer in triple-cation perovskite solar cells: Current density versus layer thickness

    , Article Ceramics International ; Volume 48, Issue 1 , 2022 , Pages 711-719 ; 02728842 (ISSN) Rastegar Moghadamgohari, Z ; Heidariramsheh, M ; Taghavinia, N ; Mohammadpour, R ; Rasuli, R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Cu2ZnSnS4 (CZTS) is a good candidate for cost-effective perovskite solar cells (PSCs) due to its direct bandgap with a value of 1.4–1.5 eV. In this study, we investigate CZTS ink as an inorganic hole-transport-layer (HTL) in CsMAFAPbIBr mixed halide PSCs. We study the cell efficiency and hole extraction from the perovskite layer for different thicknesses of HTL. The optimized device exhibits better hole selectivity, and the best efficiency of the device (12.84%) is achieved for the CZTS layer with a thickness of 159 nm. The prepared samples were also tested by open-circuit voltage decay analysis and electrochemical impedance spectroscopies. Results show that the optimized device effectively... 

    An efficient biosurfactant-producing bacterium pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 69, Issue 2 , 2009 , Pages 183-193 ; 09277765 (ISSN) Bagheri Lotfabad, T ; Shourian, M ; Roostaazad, R ; Rouholamini Najafabadi, A ; Adelzadeh, M. R ; Akbari Noghabi, K ; Sharif University of Technology
    2009
    Abstract
    A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in southern Iran. It was affiliated with Pseudomonas. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, MR01, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties. Compositional analysis revealed that the extracted biosurfactant was composed of high percentages lipid (∼65%, w/w) and carbohydrate (∼30%, w/w) in addition to a minor fraction of protein (∼4%, w/w). The best production of 2.1 g/l was obtained when the cells were grown on... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of... 

    A novel iron complex containing an N,O-type bidentate oxazoline ligand: Synthesis, X-ray studies, DFT calculations and catalytic activity

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Vol. 133, issue , Jun , 2014 , p. 432-438 Amini, M ; Arab, A ; Derakhshandeh, P. G ; Bagherzadeh, M ; Ellern, A ; Woo, L. K ; Sharif University of Technology
    Abstract
    A five-coordinated Fe(III) complex with the distorted trigonal bipyramidal configuration was synthesized by reactions of FeCl36H2O and 2-(2′-hydroxyphenyl)oxazoline (Hphox) as a bidentate ON donor oxazoline ligand. Complex [Fe(phox)2Cl] was fully characterized, including by single-crystal X-ray structure analysis. DFT calculations were accompanied with experimental results in order to obtain a deeper insight into the electronic structure and vibrational normal modes of complex. Oxidation of sulfides to sulfoxides in one-step was conducted by this complex as catalyst using urea hydrogen peroxide (UHP) in mixture of CH2Cl 2/CH3OH (1:1) under air at room temperature. The results show that using... 

    Miniaturized salting-out liquid-liquid extraction in a coupled-syringe system combined with HPLC-UV for extraction and determination of sulfanilamide

    , Article Talanta ; Vol. 121 , April , 2014 , pp. 199-204 ; ISSN: 00399140 Sereshti, H ; Khosraviani, M ; Sadegh Amini-Fazl, M ; Sharif University of Technology
    Abstract
    In salting-out liquid-liquid extraction (SALLE) technique, water-miscible organic solvents are used for extraction of polar analytes from saline solutions. In this study, for the first time, a coupled 1-mL syringes system was utilized to perform a miniaturized SALLE method. Sulfanilamide antibiotic was extracted and determined via the developed method followed by high performance liquid chromatography-ultraviolet detection (HPLC-UV). The extraction process was carried out by rapid shooting of acetonitrile as extraction solvent (syringe B) into saline aqueous sample solution (syringe A), and then the shooting was repeated several times at a rate of 1 cycle s-1. Thereby, an extremely large... 

    Temperature: the "ignored" factor at the nanobio interface

    , Article ACS Nano ; Volume 7, Issue 8 , 2013 , Pages 6555-6562 ; 19360851 (ISSN) Mahmoudi, M ; Abdelmonem, A. M ; Behzadi, S ; Clement, J. H ; Dutz, S ; Ejtehadi, M. R ; Hartmann, R ; Kantner, K ; Linne, U ; Maffre, P ; Metzler, S ; Moghadam, M. K ; Pfeiffer, C ; Rezaei, M ; Ruiz-Lozano, P ; Serpooshan, V ; Shokrgozar, M. A ; Nienhaus, G. U ; Parak, W. J ; Sharif University of Technology
    2013
    Abstract
    Upon incorporation of nanoparticles (NPs) into the body, they are exposed to biological fluids, and their interaction with the dissolved biomolecules leads to the formation of the so-called protein corona on the surface of the NPs. The composition of the corona plays a crucial role in the biological fate of the NPs. While the effects of various physicochemical parameters on the composition of the corona have been explored in depth, the role of temperature upon its formation has received much less attention. In this work, we have probed the effect of temperature on the protein composition on the surface of a set of NPs with various surface chemistries and electric charges. Our results... 

    Thorough tuning of the aspect ratio of gold nanorods using response surface methodology

    , Article Analytica Chimica Acta ; Volume 779 , 2013 , Pages 14-21 ; 00032670 (ISSN) Hormozi Nezhad, M. R ; Robatjazi, H ; Jalali Heravi, M ; Sharif University of Technology
    2013
    Abstract
    In the present work a central composite design based on response surface methodology (RSM) is employed for fine tuning of the aspect ratios of seed-mediated synthesized gold nanorods (GNRs). The relations between the affecting parameters, including ratio of l-ascorbic acid to Au3+ ions, concentrations of silver nitrate, CTAB, and CTAB-capped gold seeds, were explored using a RSM model. It is observed that the effect of each parameter on the aspect ratio of developing nanorods highly depends on the value of the other parameters. The concentrations of silver ions, ascorbic acid and seeds are found to have a high contribution in controlling the aspect ratios of NRs. The optimized parameters led... 

    Anticorrosion properties of smart coating based on polyaniline nanoparticles/epoxy-ester system

    , Article Progress in Organic Coatings ; Volume 75, Issue 4 , 2012 , Pages 502-508 ; 03009440 (ISSN) Arefinia, R ; Shojaei, A ; Shariatpanahi, H ; Neshati, J ; Sharif University of Technology
    2012
    Abstract
    In this study, the anticorrosive effect of dodecylbenzenesulfonicacid-doped polyaniline nanoparticles [n-PANI (DBSA)] as a conductive polymer was investigated using electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) techniques. Initially, the n-PANI (DBSA) were successfully synthesized via inverse microemulsion polymerization leading to the spherical nanoparticles with an average diameter less than 30 nm. Two coating systems including 1 wt% n-PANI(DBSA) blended epoxy ester (n-PANI(DBSA)/EPE) and neat epoxy ester (EPE) were coated on the carbon steal substrate. The anticorrosion performance of the prepared coatings was studied using EIS measurement in 3.5%... 

    The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent

    , Article International Journal of Pharmaceutics ; Volume 433, Issue 1-2 , 2012 , Pages 129-141 ; 03785173 (ISSN) Masoudi, A ; Madaah Hosseini, H. R ; Shokrgozar, M. A ; Ahmadi, R ; Oghabian, M. A ; Sharif University of Technology
    2012
    Abstract
    Superparamganetic iron oxide-based contrast agents in magnetic resonance imaging (MRI) have offered new possibility for early detection of lymph nodes and their metastases. According to important role of nanoparticle size in biodistribution, magnetite nanoparticles coated with different polyethylene glycol (PEG) concentrations up to 10/1 PEG/iron oxide weight ratio in an ex situ manner. To predict the PEG-coated nanoparticle behavior in biological media, such as blood stream or tissue, colloidal stability evaluation was performed to estimate the coating endurance in different conditions. Accordingly, optical absorbance measurements were conducted in solutions with different values of pH and... 

    Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase

    , Article Journal of Hazardous Materials ; Volume 209-210 , 2012 , Pages 199-203 ; 03043894 (ISSN) Forootanfar, H ; Movahednia, M. M ; Yaghmaei, S ; Tabatabaei Sameni, M ; Rastegar, H ; Sadighi, A ; Faramarzi, M. A ; Sharif University of Technology
    2012
    Abstract
    The ability of Paraconiothyrium variabile, a laccase producing ascomycete recently isolated from soil, was studied to eliminate chlorophenol derivatives in submerged culture medium. Among the tested compounds, ρ-chlorophenol (ρ-CP) and pentachlorophenol (PCP) were found to have minimum and maximum toxic effects, respectively, on the growth of the microorganism and at the same time high and low bioelimination percentages. The fungal strain was able to remove 86% of ρ-CP (with initial concentration of 40mgl -1) and 56% of 2,4-dichlorophenol (2,4-DCP; with same concentration as ρ-CP) after 9 days of incubation while no elimination was observed in the presence of 2,4,6-trichlorophenol... 

    Effect of annealing temperature on growth of Ce-ZnO nanocomposite thin films: X-ray photoelectron spectroscopy study

    , Article Thin Solid Films ; Volume 520, Issue 2 , November , 2011 , Pages 721-725 ; 00406090 (ISSN) Yousefi, M ; Azimirad, R ; Amiri, M ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    Ce-doped ZnO nanocomposite thin films with Ce/Zn ratio fixed at optimum value (10 at.%) have been prepared via sol-gel method at different annealing temperatures varied from 180 to 500 °C. The synthesized samples were characterized employing atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) techniques. According to AFM analysis, the average grain size increased from about 70 nm to 150 nm by increasing the annealing temperature from 300 to 500 °C. Moreover, based on the XPS data analysis, it was found that three major metal ions namely Ce 3+, Ce4+, and Zn2+ coexist on the surface of the nanocomposite films. XPS data analysis also revealed that...