Loading...
Search for: ions
0.008 seconds
Total 747 records

    Efficient removal of heavy metal ions from aqueous media by unmodified and modified nanodiamonds

    , Article Journal of Environmental Management ; Volume 316 , 2022 ; 03014797 (ISSN) Ahmadijokani, F ; Molavi, H ; Peyghambari, A ; Shojaei, A ; Rezakazemi, M ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Academic Press  2022
    Abstract
    This article deals with the adsorption performances of the unmodified nanodiamond (ND) and thermally oxidized nanodiamond (Ox-ND) for the removal of different heavy metal ions such as Fe (III), Cu (II), Cr (VI), and Cd (II) from wastewater. The adsorption capacities of the ions onto adsorbents are higher and follow the order: Ox-ND-3 > Ox-ND-1.5 > ND, which is consistent with their surface areas, zeta potentials, and the presence of carboxyl groups, suggesting that electrostatic attractions between the positive metal ions and the negatively charged adsorbents are the predominant adsorption mechanisms. Adsorption capacities of these adsorbents were found to be 26.8, 31.3, and 45.7 mg/g for Fe... 

    Synthesis of Luminescent Carbon Dots for Selectivity Study Towards Metal Ions

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Nazer Hossein (Author) ; Hormozi-Nezhad, Mohammad Reza (Supervisor)
    Abstract
    Today, the use of graphene quantum dots has been very much considered due to easy synthesis methods, strong fluorescence emission, and many sources of synthesis. In this study, the effect of changing capping agent of graphene quantum dots toward iron (Ⅲ), copper (Ⅱ) and mercury (Ⅱ) ions was studied. The linear range of response of the graphene quantum dots synthesized with ethylenediamine for mercury (Ⅱ) and iron (Ⅲ) ions was 10-70 µM, and this sensor also responded to Cu (Ⅱ) ions. Urea synthesized graphene quantum dots also responded to all three ions. The linear range of the response for mercury (Ⅱ) , iron (Ⅲ) and copper (Ⅱ) ions was 5-25, 10-70 and 120-120 μM respectively. The linear... 

    Electrodialysis of Llithium from Spent Lithium-Ion Battries

    , M.Sc. Thesis Sharif University of Technology Padash, Meimanat (Author) ; Askari, Masoud (Supervisor)
    Abstract
    In this study, Lithium recovery process from lithium-ion battery was investigated by electrodialysis method. First, the cathode of the battery was leached in NMP to separate cathode from aluminum foil. Then, the cathode was leached in sulfuric acid with concentration 3.25 M and 10 volume percent hydrogen peroxide that pulp density was 55 g/L at 60°C for 100 minutes. in the next step, an electrodialysis cell was designed and created to recover lithium. And the influence of time, voltage, flow rate of feed solution, concentration of electrode solution and concentration of feed solution on process was investigated. Purpose of this project were investigated lithium ion recovery rate, lithium... 

    Prediction of the aqueous solubility of BaSO4 using pitzer ion interaction model and LSSVM algorithm

    , Article Fluid Phase Equilibria ; Vol. 374, issue , July , 2014 , p. 48-62 ; ISSN: 03783812 Safari, H ; Shokrollahi, A ; Jamialahmadi, M ; Ghazanfari, M. H ; Bahadori, A ; Zendehboudi, S ; Sharif University of Technology
    Abstract
    Deposition of barium sulfate (or BaSO4) has already been recognized as a devastating problem facing process industries and oilfield operations, mainly owing to its low solubility in aqueous solutions. Predicting and also preventing the overall damage caused by BaSO4 precipitation requires a profound knowledge of its solubility under different thermodynamic conditions. The main aim of this study is to develop a solubility prediction model based on a hybrid of least squares support vector nachines (LSSVM) and coupled simulated annealing (CSA) aiming to predict the solubility of barium sulfate over wide ranges of temperature, pressure and ionic compositions. Results indicate that predictions of... 

    Purification and zymography of lipase from aspergillus Niger PTCC5010

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 28, Issue 8 , 2015 , Pages 1115-1123 ; 1728-144X (ISSN) Ghamari, M ; Alemzadeh, I ; Tabatabaee Yazdi, F ; Vossoughi, M ; Varidi, M ; Sharif University of Technology
    Materials and Energy Research Center  2015
    Abstract
    In this study, Lipase from Aspergillus Niger after extraction of medium culture was precipitated with different percentages of acetone and purified by ion exchange chromatography using SP-Sepharose HP and Q-Sepharose HP. The process of purification of the enzyme was studied by electrophoresis and the molecular weight was detected and determined by Zymography using overlying containing phenol red and Rhodamine B. The results showed that the vast majority of lipase from this strain has been precipitated by 70% saturation acetone, and leads to the 1.67 fold the purified enzyme, with special activities 32.8 U. mg-1 and efficiency of 38.5%. Using two-phase chromatography, enzyme specific activity... 

    Synergy effects of ions, resin, and asphaltene on interfacial tension of acidic crude oil and low-high salinity brines

    , Article Fuel ; Volume 165 , 2016 , Pages 75-85 ; 00162361 (ISSN) Lashkar Bolooki, M ; Riazi, M ; Ayatollahi, S ; Zeinol Abedini Hezave, A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    It is well established that the heavy oil components including asphaltenes and resins play vital roles on the interfacial tension (IFT) of acidic crude oil (ACO) and aqueous solutions. Therefore, this experimental work is designed to investigate the possible synergism between salt ions, resin, and asphaltene on the IFT of ACO/low and high salinity brines containing MgCl2/NaCl and CaCl2. The results demonstrate that a complex ion of MgCl2 - resin component created in the solution could occupy the sites at the interface at high MgCl2 concentration. However, the results show that on the contrary, the molecular arrangement of MgCl2 and asphaltene at low and high MgCl2 concentration could be... 

    Electrical conductivity of methylimidazolium hexafluorophosphate ionic liquid in the presence of colloidal silver nano particles with different sizes and temperatures

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 39 , 2017 ; 19327447 (ISSN) Taherkhani, F ; Kiani, S ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    Colloidal nanoparticle could be used for recognition location of tumors and cancer tissue. A simulation of molecular dynamic for colloidal silver nanoparticles (Ag NPs) based on density functional theory (DFT) potential parametrization with different sizes in 1-ethyl-3-methylimidazolium hexafluorophosphate [EMim][PF6] ionic liquid was performed. Then, using Green Kubo formalism, diffusion coefficient for Ag NPs in IL and in the gas phase was calculated. We also calculated diffusion coefficients of anions and cations for pure IL and IL in the presence of different sizes of Ag NPs at different temperatures. The findings showed that the diffusion coefficient of anions and cations increases in... 

    Poly (vinyl alcohol)/graphene oxide nanocomposite films and hydrogels prepared by gamma ray

    , Article Plastics, Rubber and Composites ; Volume 48, Issue 2 , 2019 , Pages 42-47 ; 14658011 (ISSN) Frounchi, M ; Dadbin, S ; Tabatabaei, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Poly (vinyl alcohol)/graphene oxide (PVA/GO) gamma irradiated nanocomposite films and hydrogels were prepared. In composite films, GO was initially irradiated by gamma ray in order to improve interactions between GO and PVA. The film containing 1 wt-% GO was very strong where tensile modulus and tensile yield strength were 45 and 115% higher than those of pure PVA. In the second set of experiments PVA/GO hydrogels were made by irradiating PVA/GO suspensions by gamma ray at various doses. It was an interesting finding that GO increased the gel portion of hydrogels through contribution of H-bonds between PVA and GO. The hydrogels prepared at 20 kGy had remarkable water swelling ratio that... 

    Structural, microstructural and electrochemical studies of TiO2-Ag double layer coated NCM cathode for lithium-ion batteries

    , Article Materials Research Express ; Volume 6, Issue 8 , 2019 ; 20531591 (ISSN) Sharifi Rad, A ; Ghorbanzadeh, M ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Lithium ion batteries as one of the most important energy storage equipments, have several challenges including capacity drop as number of cycles increases. Cathode particle coating is an effective approach in improvement of electrochemical performance of the batteries. In this study, TiO2-Ag coating was used to improve NCM cathode performance. The microstructure and crystal structure properties of coated NCMs were evaluated by the FE-SEM and XRD. Electrochemical behavior of the batteries was investigated by cycling performance analysis and EIS. TiO2 coating was deposited as a uniform layer and Ag coating was precipitated as dispersed nanoparticles. The results shows that using of TiO2-Ag... 

    Fabrication, characterization, and electrochemical performance of the hdpe/sepiolite nanocomposite as a novel separator for li-ion batteries

    , Article Express Polymer Letters ; Volume 15, Issue 11 , 2021 , Pages 1063-1080 ; 1788618X (ISSN) Mohammadzad, M. Kh ; Pircheraghi, G ; Sharifi, H ; Sharif University of Technology
    BME-PT and GTE  2021
    Abstract
    Separators are one of the most critically important components of lithium-ion batteries to ensure the safe performance of the battery. Commercial polyolefin separators have high thermal shrinkage and low electrolyte uptake, which confines the application of the battery. By using the thermally induced phase separation (TIPS) method, we successfully prepared HDPE/sepiolite nanocomposite separators with high thermal stability and electrolyte wettability. The sepiolite nanofibers are modified with the Vinyltriethoxysilane (VTES) as a coupling agent for better dispersion and interaction in the HDPE matrix. The purpose of fabricating this separator is to decrease the thermal shrinkage and... 

    Cycling performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques

    , Article Ionics ; 2021 ; 09477047 (ISSN) Sharifi, H ; Mosallanejad, B ; Mohammadzad, M ; Hosseini Hosseinabad, S. M ; Ramakrishna, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this work, cycling-induced aging occurring in 18650-type LiFePO4/graphite full cells at different C-rates is studied extensively. The mechanism of performance degradation is investigated using a combination of electrochemical and microstructural analyses. Half-cell studies are carried out after dismantling the full cells, using fresh and cycled LiFePO4 cathode and graphite anode to independently study them. The results show that the capacity of LiFePO4 electrodes is significantly recovered. The rate of capacity fading in the discharge state considered as irreversible capacity in the graphite is higher than LiFePO4 half cells, indicating a greater degradation in the performance of this... 

    Spinel H4Ti5O12 nanotubes for Li recovery from aqueous solutions: Thermodynamics and kinetics study

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Shoghi, A ; Ghasemi, S ; Askari, M ; Khosravi, A ; Hasan Zadeh, A ; Alamolhoda, A. A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, H4Ti5O12 nanotubes have been prepared as Li+ adsorbent by acid treatment of Li4Ti5O12 nanotubes. Li4Ti5O12 nanotubes were synthesized via a hydrothermal method in which TiO2(B) nanNotubes were used as a precursor. The prepared Li-ion sieve showed a significant high ion-exchange capacity (160.6 mgg−1) for lithium ions due to its large specific surface area of 115.4 m2 g-1 compared to the other related studies. The kinetics and isotherm investigation revealed that the pseudo-second-order equation well described the adsorption kinetics, and the Langmuir model well fitted the isotherm data. Furthermore, the low value of adsorption energy obtained from the Dubinin-Radushkevitch... 

    Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor

    , Article Electrochimica Acta ; Volume 390 , 2021 ; 00134686 (ISSN) Abdollahi, A ; Abnavi, A ; Ghasemi, F ; Ghasemi, S ; Sanaee, Z ; Mohajerzadeh, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study reports the successful fabrication of high-performance flexible binder-free lithium-ion battery anode and supercapacitor based on the synthesis of 3D hierarchical MnO2 nanoflakes (NFs) on vertically aligned carbon nanotubes (VACNTs) grown upon stainless steel (SS). The experimental results revealed that the prepared electrodes were well served as supercapacitors with a tremendous specific capacitance of MnO2 NFs VACNT/SS 1131 F/g at 0.25 A/g in 0.5 mol.L−1 Na2SO4, 518.8% more than VACNT/SS (218 F/g). Compared to other MnO2 NFs/CNT composites, as-fabricated binder-free MnO2 NFs/VACNTs electrode achieves outstanding performance with high initial discharge and charge capacities of... 

    Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor

    , Article Electrochimica Acta ; Volume 390 , 2021 ; 00134686 (ISSN) Abdollahi, A ; Abnavi, A ; Ghasemi, F ; Ghasemi, S ; Sanaee, Z ; Mohajerzadeh, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study reports the successful fabrication of high-performance flexible binder-free lithium-ion battery anode and supercapacitor based on the synthesis of 3D hierarchical MnO2 nanoflakes (NFs) on vertically aligned carbon nanotubes (VACNTs) grown upon stainless steel (SS). The experimental results revealed that the prepared electrodes were well served as supercapacitors with a tremendous specific capacitance of MnO2 NFs VACNT/SS 1131 F/g at 0.25 A/g in 0.5 mol.L−1 Na2SO4, 518.8% more than VACNT/SS (218 F/g). Compared to other MnO2 NFs/CNT composites, as-fabricated binder-free MnO2 NFs/VACNTs electrode achieves outstanding performance with high initial discharge and charge capacities of... 

    Magnetic stirring assisted hydrothermal synthesis of Na3MnCO3PO4 cathode material for sodium-ion battery

    , Article Ceramics International ; Volume 47, Issue 19 , 2021 , Pages 26929-26934 ; 02728842 (ISSN) Hassanzadeh, N ; Sadrnezhaad, S.K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Na3MnCO3PO4 (NMCP) is considered one of the promising cathode materials for sodium-ion batteries due to its high theoretical capacity. The hydrothermal method is an efficient, environmental-friendly, and simple route with low instrument cost to prepare active cathode materials such as NMCP. In this research, magnetic stirring was applied to promote the hydrothermal synthesis, and NMCP was produced by controlling different stirring times. This method results in the formation of pure NMCP upon only 45 min processing time. According to the ICP results, the Na to Mn ratio in the NMCP approached the stoichiometric value of 3 by prolonging the stirring time. By analyzing the charge-discharge... 

    Lithium Extraction with TiO2 Nanotube Synthesized by Anodizing Method

    , M.Sc. Thesis Sharif University of Technology Taghvaei, Nastaran (Author) ; Askari, Masoud (Supervisor)
    Abstract
    Due to the technology advancement and the large-scale application of lithium-ion batteries in recent years, the market demand for lithium is growing rapidly and the availability of land lithium resources is decreasing significantly. As such, the focus of lithium extraction technologies has shifted to water lithium resources involving salt-lake brines and sea water. The ion exchange process is a promising method for lithium extraction from brine and seawater having low concentrations of this element. Among various aqueous recovery technologies, the lithium ion-sieve (LIS) technology is considered the most promising one. This is because LISs are excellent adsorbents with high lithium uptake... 

    Quick speciation of iron(II) and iron(III) in natural samples using a selective fluorescent carbon dot-based probe

    , Article Analytical Methods ; Volume 8, Issue 20 , 2016 , Pages 4064-4068 ; 17599660 (ISSN) Hormozi Nezhad, M. R ; Taghipour, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    A new, simple and rapid carbon dot (CD) based fluorescent probe for speciation of Fe2+ and Fe3+ ions was developed. The as-prepared CDs contain phenol groups on their surfaces and due to the special coordination interaction of phenol groups with Fe3+ ions, this sensing system exhibits excellent sensitivity and selectivity toward Fe3+. In order to detect Fe2+ ions as well, a specific amount of H2O2 was introduced to the detection system to transform Fe2+ to Fe3+ of which the latter is the determinable form of iron. Under the optimum experimental conditions, the fluorescence intensity of the sensor decreased as the Fe3+ ion concentration increased. The relationship plot between the... 

    Effect of asphaltene and resin on interfacial tension of acidic crude oil/ sulfate aqueous solution: Experimental study

    , Article Fluid Phase Equilibria ; Volume 414 , 2016 , Pages 149-155 ; 03783812 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Although the capability of using sulfate anion as a wettability modiffier is well established, no systematic investigation on the effect of sulfate ions and natural surfactants in the crude oil including asphaltene and resin on the interfacial tension (IFT) of acidic crude oil (ACO)/sulfate were performed. In this regards, the fluid/fluid interactions are tested through the IFT measurements for ACO, asphaltene and resin extracted from ACO in the presence of sulfate salts including Na2SO4, MgSO4 and CaSO4 while the concentration of each salt ranges between 0 and 45000 ppm. The obtained results demonstrate that the capability of asphaltene molecules is higher for IFT reduction compared with... 

    Possibility of methane conversion into heavier hydrocarbons using nanosecond lasers

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 156 , 2016 , Pages 118-122 ; 13861425 (ISSN) Navid, H. A ; Irani, E ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Effect of nanosecond lasers on the methane dissociation is experimentally studied by using three different laser wavelengths at 248 nm, 355 nm and 532 nm. C2H2 generation is measured as a major reaction product in experiments and the energy consumptions in production of this component are measured as 5.8 MJ/mol, 3.1 MJ/mol and 69.0 MJ/mol, for 355 nm, 532 nm and 248 nm wavelengths, respectively. The mechanism of conversion and production of new stable hydrocarbons is also theoretically investigated. It is found that in theoretical calculations, the ion-molecule reactions should be included and this leads to a unique approach in proper explanation of the experimental measurements  

    Synthesis parameters effect on the final morphology of the layered double hydroxide (LDH)

    , Article Protection of Metals and Physical Chemistry of Surfaces ; Volume 53, Issue 3 , 2017 , Pages 460-465 ; 20702051 (ISSN) Imanieh, I ; Afshar, A ; Sharif University of Technology
    Maik Nauka Publishing / Springer SBM  2017
    Abstract
    Smart coatings which prevent corrosion by several mechanisms recently have been carefully planned. One of these mechanisms is the use of ion exchangers like LDH in the coating network. Since the morphology is the most important properties for the applications that the surface plays an important role, LDH morphology was evaluated in this study. For this purpose, the LDH contain a kind of green inhibitor was synthesized and after evaluating its performance it was examined morphologically by changing significant parameters like MII/MIII, pH, aging time and temperature. It is found that, high ratio of the MII/MIII cause thinner layer of LDH. The pH also has special effect on the surface...