Loading...
Search for: magnets
0.012 seconds
Total 1523 records

    Toward epileptic brain region detection based on magnetic nanoparticle patterning

    , Article Sensors (Switzerland) ; Volume 15, Issue 9 , September , 2015 , Pages 24409-24427 ; 14248220 (ISSN) Pedram, M. Z ; Shamloo, A ; Alasty, A ; Ghafar Zadeh, E ; Sharif University of Technology
    MDPI AG  2015
    Abstract
    Resection of the epilepsy foci is the best treatment for more than 15% of epileptic patients or 50% of patients who are refractory to all forms of medical treatment. Accurate mapping of the locations of epileptic neuronal networks can result in the complete resection of epileptic foci. Even though currently electroencephalography is the best technique for mapping the epileptic focus, it cannot define the boundary of epilepsy that accurately. Herein we put forward a new accurate brain mapping technique using superparamagnetic nanoparticles (SPMNs). The main hypothesis in this new approach is the creation of super-paramagnetic aggregates in the epileptic foci due to high electrical and... 

    Superparamagnetic nanoparticles for epilepsy detection

    , Article World Congress on Medical Physics and Biomedical Engineering, 2015, 7 June 2015 through 12 June 2015 ; Volume 51 , June , 2015 , Pages 1237-1240 ; 16800737 (ISSN) ; 9783319193878 (ISBN) Pedram, M. Z ; Shamloo, A ; Alasty, A ; Ghafar Zadeh, E ; Jaffray D. A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Epilepsy is the most common neurological disorder that is known with uncontrolled seizure. Around 30% of patients with epilepsy resist to all forms of medical treatments and therefore, the removal of epileptic brain tissue is the only solution to get these patients free from chronical seizures. The precise detection of an epileptic zone is key to its treatment. In this paper, we propose a method of epilepsy detection using brain magnetic field. The possibility of superparamagnetic nanoparticle (SPMN) as sensors for the detection of the epileptic area inside the brain is investigated. The aggregation of nanoparticles in the weak magnetic field of epileptic brain is modeled using potential... 

    The effect of non-uniform magnetic field on the efficiency of mixing in droplet-based microfluidics: a numerical investigation

    , Article Micromachines ; Volume 13, Issue 10 , 2022 ; 2072666X (ISSN) Rezaeian, M ; Nouri, M ; Hassani Gangaraj, M ; Shamloo, A ; Nasiri, R ; Sharif University of Technology
    MDPI  2022
    Abstract
    Achieving high efficiency and throughput in droplet-based mixing over a small characteristic length, such as microfluidic channels, is one of the crucial parameters in Lab-on-a-Chip (LOC) applications. One solution to achieve efficient mixing is to use active mixers in which an external power source is utilized to mix two fluids. One of these active methods is magnetic micromixers using ferrofluid. In this technique, magnetic nanoparticles are used to make one phase responsive to magnetic force, and then by applying a magnetic field, two fluid phases, one of which is magneto-responsive, will sufficiently mix. In this study, we investigated the effect of the magnetic field’s characteristics... 

    Study on The Influence of Nanoparticles and Magnetic Field on The Liquid-Liquid Mass Transfer Coefficients

    , M.Sc. Thesis Sharif University of Technology Vahedi, Amid (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    Magnetite (Fe3O4) nanoparticles were synthesized and coated with Oleic Acid using the co-precipitation method. The particles were characterized using DLS, FT-IR, SEM, XRD, VSM and UV-Vis spectrophotometry analysis. The mean size of particles was 28.8 nm and the FT-IR analysis indicated that Oleic Acid was coated suitably on the nanoparticles. The vsm test indicated no hysteresis loop for the particles, defining the superparamagnetism of them. A nanofluid containing nanoparticles in 5wt% Acetic Acid in Toluene as the base fliud was prepared. The stability of this nanofluid was determined using UV-Vis spectrophotometry to be less more then 95% in the first two hours. This nanofluid is used as... 

    Magnetic viscosity-coercivity relation for Fe1-xCox fine particles

    , Article Physica B: Condensed Matter ; Volume 403, Issue 1 , 2008 , Pages 12-15 ; 09214526 (ISSN) Zoriasatain, S ; Sebt, S. A ; Akhavan, M ; Sharif University of Technology
    2008
    Abstract
    The variation of the applied field results in a subsequent change of magnetization with time. There is a relationship between the coercivity (Hc), as the equilibrium characteristic of the system, and its magnetic stability (1/S), as a parameter characterizing the time dependence. 1/S as a function of Hc has been measured and studied for different Fe1-xCox samples. We synthesized several samples with different values of x by applying various magnetic fields during the grains' growth, and observed a linear relationship between 1/S and Hc. © 2007 Elsevier B.V. All rights reserved  

    Electrical and magnetic properties of RuGd1.6Ce 0.4Sr2Cu2O10-δ

    , Article 4th International Conference on Magnetic and Superconducting Materials, MSM'05, Agadir, 5 September 2006 through 8 September 2006 ; Volume 3, Issue 9 , 2006 , Pages 2964-2967 ; 18626351 (ISSN) Sabri, D ; Hadipour, H ; Mirzadeh, M ; Akhavan, M ; Sharif University of Technology
    2006
    Abstract
    We have studied the electrical and magnetic properties of normal and superconducting states of RuGd1.6Ce0.4Sr 2Cu2O10-δ (Ru-1222) system, prepared by the standard solid-state reaction technique, with applied magnetic field. The resistivity curves show that at high temperature the system is paramagnetic. At lower temperature, we can observe two magnetic transitions from paramagnetic state to anti-ferromagnetic and from anti-ferromagnetic to ferromagnetic. At room temperature the resistivity of sample shows insulating behavior and superconducting transition occurs at 45 K. Superconducting and magnetic parameters such as superconducting transition temperature Tc, magnetic transition Tirr, have... 

    Magnetic anisotropies in FeCo fine particles

    , Article Journal of Magnetism and Magnetic Materials ; Volume 300, Issue 2 , 2006 , Pages 525-531 ; 03048853 (ISSN) Zoriasatain, S ; Azarkharman, F ; Sebt, S. A ; Akhavan, M ; Sharif University of Technology
    2006
    Abstract
    The single-domain particles, especially FeCo fine particles have many applications in magnetic information technology. We have prepared Fe 1-xCox fine particles for different x by borohydride method and measured the magnetic and structural properties of the samples. We have then determined the variations of coercivity and anisotropy energy versus x in Fe1-xCox fine particles. The obtained results have been analyzed on the basis of various magnetic anisotropies. Magnetic anisotropies affect the coercivity of the medium for each x as follows: shape and crystal anisotropies for x=0, surface and crystal anisotropies for x=1, shape, induced and crystal anisotropies for x=0.3 and 0.5, and shape... 

    Anomalous magnetic moment of hot quarks, inverse magnetic catalysis, and reentrance of the chiral symmetry broken phase

    , Article Physical Review D - Particles, Fields, Gravitation and Cosmology ; Vol. 90, issue. 10 , 2014 ; ISSN: 15507998 Fayazbakhsh, S ; Sadooghi, N ; Sharif University of Technology
    Abstract
    The effect of the anomalous magnetic moment of quarks on thermodynamic properties of the chiral condensate is studied, using a two-flavor Nambu-Jona-Lasinio model at finite temperature T, chemical potential μ, and in the presence of a uniform magnetic field eB. To this purpose, the Schwinger linear-in-B ansatz for the anomalous magnetic moment of quarks is considered in terms of the nonperturbative Bohr magneton. In a two-dimensional flavor space, it leads to the correction TSch=κQeB in the energy dispersion relation of quarks. Here, Q is the quark charge matrix. We consider three different sets for κ, and numerically determine the dependence of the constituent quark mass on T,μ, and eB for... 

    Optimization of the magnetic properties and microstructure of Co 2+-La3+ substituted strontium hexaferrite by varying the production parameters

    , Article Ceramics International ; Vol. 40, issue. 4 , May , 2014 , pp. 5675-5680 ; ISSN: 02728842 Nourbakhsh, A. A ; Vahedi, A ; Nemati, A ; Noorbakhsh, M ; Mirsatari. S. N ; Shaygan, M ; Mackenzie, K. J. D ; Sharif University of Technology
    Abstract
    The aim of this paper was to improve the magnetic properties of magnetoplumbite-type (M-type) strontium hexaferrite substituted with Co 2+-La3+ produced by conventional ceramic forming techniques. The effect on the magnetic properties of varying the composition of the target compound Sr1-xLaxFe12-yCo yO19 and the primary and secondary firing temperatures was investigated. Microstructure studies and XRD phase analysis indicated that optimum values of the remanent magnetization Br and coercive field Hcj were obtained with a primary firing temperature of 1240 C and a final firing temperature of 1180 C, where (x=y)th 1=0.15, (y/x)exp 2=0.75 and the molar ratio of ferric oxide to strontium... 

    Modeling and position control of a magnetic levitation system calculating eddy current based damping force

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 4A , 2014 Nojoumian, M. A ; Khodabakhsh, M ; Vossoughi, G. R ; Sharif University of Technology
    Abstract
    In this paper a magnetic levitation system is modeled and an eddy current based damping force is identified and used for position control of the levitated object in the system. In the magnetic levitation technology, contactless manipulation of a levitated object is done by use of magnetic fields. Also, the eddy-current based force is used to damp the motion of the levitated object. Eddy-current is generated in a plate which is placed underneath the levitated object due to the change of current in an electromagnet and the motion of the levitated object. First, using finite element method (FEM), the magnetic levitation system is modeled and the eddy-current based force acting on the levitated... 

    Cross-linked poly (dimethylaminoethyl acrylamide) coated magnetic nanoparticles: a high loaded, retrievable, and stable basic catalyst for the synthesis of benzopyranes in water

    , Article RSC Advances ; Vol. 4, issue. 91 , 2014 , p. 50047-50055 Zohreh, N ; Hosseini, S. H ; Pourjavadi, A ; Bennett, C ; Sharif University of Technology
    Abstract
    A novel heterogeneous catalyst has been synthesized based on the distillation-precipitation-polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the amidation of the methyl ester groups using N,N-dimethylethylenediamine. The resulting poly(dimethylaminoethyl acrylamide) coated magnetic nanoparticles (MNP@PDMA) catalyst was characterized using an array of sophisticated analytical techniques, including FT-IR, TGA, SEM, TEM, CHN, vibrating sample magnetometer (VSM), and XRD analysis. The resulting heterogeneous base catalyst allowed the performance of a domino Knoevenagel condensation/Michael addition/cycloaddition reaction toward the synthesis of... 

    Prediction of chaos in non-salient permanent-magnet synchronous machines

    , Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Volume 377, Issue 1-2 , December , 2012 , Pages 73-79 ; 03759601 (ISSN) Rasoolzadeh, A ; Tavazoei, M. S ; Sharif University of Technology
    2012
    Abstract
    This Letter tries to find the area in parameter space of a non-salient Permanent-Magnet Synchronous Machine (PMSM) in which chaos can occur. This area is briefly named as chaotic area. The predicted chaotic area is obtained by checking some conditions which are necessary for existence of chaos in a dynamical system. In this Letter, it is assumed that this machine is in the generator mode, and its model is based on direct and quadrature axis of stator voltages and currents. The information of the predicted area is used in non-chaotic maximum power control of torque in the machine  

    Investigation of Io's auroral hiss emissions due to its motion in Jupiter's magnetosphere

    , Article Research in Astronomy and Astrophysics ; Volume 12, Issue 6 , 2012 , Pages 693-702 ; 16744527 (ISSN) Moghimi, M. H ; Sharif University of Technology
    2012
    Abstract
    The left-hand side of the auroral hiss emission observed by Galileo has a frequency time profile shaped very similar to the funnel shape observed in the Earth's auroral region. This close similarity indicates that we can use the theory of whistler-mode propagation near the resonance cone to locate the emission source. The general characteristics of the whistler mode are discussed. Then the position of the emission source is investigated using a geometrical method that takes into account the trajectory of Galileo. Initially a point source is assumed. Then the possibility of a sheet source aligned along the magnetic field lines which are tangent to the surface of Io is investigated. Both types... 

    A new approach for calculation of relaxation time and magnetic anisotropy of ferrofluids containing superparmagnetic nanoparticles

    , Article Journal of Mining and Metallurgy, Section B: Metallurgy ; Volume 48, Issue 1 , 2012 , Pages 81-88 ; 14505339 (ISSN) Ahmadi, R ; Hosseini, H. R. M ; Sharif University of Technology
    2012
    Abstract
    In this work, a new approach is described for the calculation of the relaxation time and magnetic anisotropy energy of magnetic nanoparticles. Ferrofluids containing monodispersed magnetite nanoparticles were synthesized via hydrothermal method and then heated using the 10 kA/m external AC magnetic fields in three different frequencies: 10, 50 and 100 kHz. By measuring the temperature variations during the application of the magnetic field, the total magnetic time constant including both Brownian and Neel relaxation times can be calculated. By measuring the magnetic core size and hydrodynamic size of particles, the magnetic anisotropy can be calculated too. Synthesized ferrofluids were... 

    A novel revolving piston minipump

    , Article Sensors and Actuators, B: Chemical ; Volume 218 , October , 2015 , Pages 237-244 ; 09254005 (ISSN) Ashouri, M ; Shafii, M. B ; Moosavi, A ; Amiri Hezave, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, a novel prototype high-efficiency miniature pump that uses magnetic properties of a ferrofluid in both pumping and valving mechanisms is presented. The minichannel consisting of a cylindrical pumping chamber, a check valve, an inlet and an outlet, comprises six bonded layers of PMMA. A cylindrical permanent magnet that is placed inside the chamber and is externally actuated by a motorized off-center permanent magnet, functions as a revolving piston which sweeps the perimeter of the cylinder. Ferrofluid is used to cover the gaps between the magnetic piston and the channel walls, also serves as a separating plug between the inlet and the outlet of the chamber preventing... 

    Experimental and numerical investigation of fully developed forced convection of water-based Fe3O4 nanofluid passing through a tube in the presence of an alternating magnetic field

    , Article Advances in Mechanical Engineering ; Volume 7, Issue 2 , February , 2015 , Pages 1-9 ; 16878132 (ISSN) Dibaei Bonab, M. H ; Shafii, M. B ; Nobakhti, M. H ; Sharif University of Technology
    Hindawi Publishing Corporation  2015
    Abstract
    The effect of a magnetic field on the fully developed forced convection of Fe3O4 flow inside a copper tube is experimentally and numerically investigated. The flow is assumed to be under uniform heat flux. This study aims to examine the effects of the nanoparticle volume fraction, as well as alternating magnetic field strength and frequency, on the convective heat transfer for different Reynolds numbers. To ensure accuracy, the numerical results are validated by empirical results with similar geometry and boundary conditions. A satisfying agreement was achieved. The results show that the heat transfer increases with increase in alternating magnetic field frequency but... 

    Magnetic field and sheet-current density of a thin type-II superconducting annulus

    , Article Cryogenics ; Volume 87 , 2017 , Pages 12-17 ; 00112275 (ISSN) Babaei Brojeny, A. A ; Talebi, A. H ; Sharif University of Technology
    Abstract
    We investigate theoretically the sheet-current density and total magnetic field (MF) distribution due to a thin, type-II superconducting annulus sample. We have supposed a washer (with the inner and outer radii a and b) carrying sub-critical currents subject to an applied magnetic field. The sample is an ideal washer with no bulk pinning, under two different situations: (a) when flux is focused into the central hole and net current flowing around the washer is zero but the external field Ha=Ba/μ is on, and (b) in the presence of a potential barrier of geometrical origin. Our calculations show that the net MF is maximum in the near-edge region and in the between is weaker than other areas.... 

    Convective-heat transfer of magnetic-sensitive nanofluids in the presence of rotating magnetic field

    , Article Applied Thermal Engineering ; Volume 116 , 2017 , Pages 329-343 ; 13594311 (ISSN) Fadaei, F ; Molaei Dehkordi, A ; Shahrokhi, M ; Abbasi, Z ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this work, forced-convection heat transfer of magnetic-sensitive nanofluids has been investigated in the presence of rotating magnetic field. In this regard, the laminar, Newtonian, incompressible, and two-dimensional (2D) fluid flow in a horizontal duct subject to constant wall temperature boundary condition was modeled. Moreover, the fluid was supposed to be non-electrical conductive and the magnetic field source comprised of two time varying components perpendicular to each other. Influences of magnetic field intensity and frequency, inlet fluid velocity, and spin viscosity on the forced-convection heat transfer of the magnetic nanofluids were investigated. It was found that the... 

    Electron beam focusing in the magnetic field of a bent electron beam evaporator

    , Article Iranian Journal of Physics Research ; Volume 17, Issue 2 , 2017 , Pages 263-268 ; 16826957 (ISSN) Salahshoor, M ; Zavarian, A. A ; Hafezi, F ; Sharif University of Technology
    Isfahan University of Technology  2017
    Abstract
    In this paper, the vacuum film deposition through electron beam evaporation has been reviewed and the effect of magnetic field on the operation of this system has been explained. Then, the magnetic field distribution due to magnetic components configuartion of a commercial evaporation source with 270-degree electron beam gun (manufactured by Sharif University Branch of ACECR), has been simulated by means of a finite element software, ANSYS. The simulation result was verified by comparing with the results obtained from measurement by Hall Effect sensor. Furthermore, by using the ray-tracing capability of the software, the capability of the magnetic lens of this device for electron beam... 

    Simulation of water purification using magnetically ultra-responsive micro- and nanoscavengers

    , Article Journal of Water Process Engineering ; Volume 24 , 2018 , Pages 63-73 ; 22147144 (ISSN) Asghari, E ; Moosavi, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Access to clean water is one of the challenges of the 21st century. Thus water purification is inevitable. One method of water treatment is purification by magnetic particles in the presence of magnetic field. The contaminants are attached to the magnetic particles and then by applying a magnetic field, magnetic particles and, thus, the pollutants can be collected. For the optimal design of a water treatment system, the effect of important parameters in the design, such as magnetic fields, particle size, and Reynolds number are determined numerically by modeling and simulating the water treatment process. Two methods are used to create the magnetic field: permanent magnet and coils. It is...