Loading...
Search for: mechanical-model
0.014 seconds
Total 83 records

    Hypersensitivity of trunk biomechanical model predictions to errors in image-based kinematics when using fully displacement-control techniques

    , Article Journal of Biomechanics ; Volume 84 , 2019 , Pages 161-171 ; 00219290 (ISSN) Eskandari, A. H ; Arjmand, N ; Shirazi Adl, A ; Farahmand, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Recent advances in medical imaging techniques have allowed pure displacement-control trunk models to estimate spinal loads with no need to calculate muscle forces. Sensitivity of these models to the errors in post-imaging evaluation of displacements (reported to be ∼0.4–0.9° and 0.2–0.3 mm in vertebral displacements) has not yet been investigated. A Monte Carlo analysis was therefore used to assess the sensitivity of results in both musculoskeletal (MS) and passive finite element (FE) spine models to errors in measured displacements. Six static activities in upright standing, flexed, and extended postures were initially simulated using a force-control hybrid MS-FE model. Computed vertebral... 

    A three-dimensional statistical volume element for histology informed micromechanical modeling of brain white matter

    , Article Annals of Biomedical Engineering ; Volume 48, Issue 4 , 2020 , Pages 1337-1353 Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Springer  2020
    Abstract
    This study presents a novel statistical volume element (SVE) for micromechanical modeling of the white matter structures, with histology-informed randomized distribution of axonal tracts within the extracellular matrix. The model was constructed based on the probability distribution functions obtained from the results of diffusion tensor imaging as well as the histological observations of scanning electron micrograph, at two structures of white matter susceptible to traumatic brain injury, i.e. corpus callosum and corona radiata. A simplistic representative volume element (RVE) with symmetrical arrangement of fully alligned axonal fibers was also created as a reference for comparison. A... 

    Hydro-mechanical modeling of two-phase fluid flow in deforming, partially saturated porous media with propagating cohesive cracks using the extended finite element method

    , Article Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI, 7 September 2011 through 9 September 2011 ; September , 2011 , Pages 1516-1527 ; 9788489925731 (ISBN) Mohammadnejad, T ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In the present paper, a fully coupled numerical model is developed for the hydromechanical analysis of deforming, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non-wetting pore fluids. The governing equations involving the coupled two-phase fluid flow and deformation processes in partially saturated porous media containing cohesive cracks are derived within the framework of the generalized Biot theory. The displacement of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the three-phase formulation. A softening cohesive law is employed to describe the nonlinear...