Loading...
Search for: mouse
0.008 seconds
Total 70 records

    Image Flow and INS Sensor Fusion for the Accurate Localization of Planner Micro Robots

    , M.Sc. Thesis Sharif University of Technology khomejani, Shabnaz (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    This research focuses on the robust mobile robot localization exploiting motion information acquired from an optical mouse operating based on optical flow technology. Most techniques of visual motion measurement are based on the well research discipline called “optical flow”. Theoretically, optical flow as a method of localization can be highly accurate, but it is sensitive to the noise and surface texture/optical characteristics and distance variations between the CCD detector and surface. As one could not achieve acceptable results in practical situations, to handle these problems, we propose to attach an acceleration – gyro (INS) sensor on the CCD detector (optical mouse) to improve the... 

    Type V collagen in scar tissue regulates the size of scar after heart injury

    , Article Cell ; Volume 182, Issue 3 , 2020 , Pages 545-562.e23 Yokota, T ; McCourt, J ; Ma, F ; Ren, S ; Li, S ; Kim, T. H ; Kurmangaliyev, Y. Z ; Nasiri, R ; Ahadian, S ; Nguyen, T ; Tan, X. H. M ; Zhou, Y ; Wu, R ; Rodriguez, A ; Cohn, W ; Wang, Y ; Whitelegge, J ; Ryazantsev, S ; Khademhosseini, A ; Teitell, M. A ; Chiou, P. Y ; Birk, D. E ; Rowat, A. C ; Crosbie, R. H ; Pellegrini, M ; Seldin, M ; Lusis, A. J ; Deb, A ; Sharif University of Technology
    Cell Press  2020
    Abstract
    Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces... 

    Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces

    , Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) Tamjid, E ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    2013
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were... 

    The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: A systematic review and meta-analysis

    , Article Neuroscience and Biobehavioral Reviews ; Volume 140 , 2022 ; 01497634 (ISSN) Narmashiri, A ; Abbaszadeh, M ; Ghazizadeh, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Memory and motor deficits are commonly identified in Parkinson's disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is transformed to MPP+ via monoamine oxidase B (MAOB), which causes oxidative stress and destroys dopaminergic (DA) neurons in substantia nigra pars compacta (SNc) and is widely used to create animal models of PD. However, to-date, a comprehensive analysis of the MPTP effects on various aspects of PD does not exist. Here, we provide a systematic review and meta-analysis on the MPTP effects on memory and motor functions by analyzing 51 studies on more than one thousand animals mainly including rats and mice. The results showed that in addition to motor functions... 

    The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent

    , Article International Journal of Pharmaceutics ; Volume 433, Issue 1-2 , 2012 , Pages 129-141 ; 03785173 (ISSN) Masoudi, A ; Madaah Hosseini, H. R ; Shokrgozar, M. A ; Ahmadi, R ; Oghabian, M. A ; Sharif University of Technology
    2012
    Abstract
    Superparamganetic iron oxide-based contrast agents in magnetic resonance imaging (MRI) have offered new possibility for early detection of lymph nodes and their metastases. According to important role of nanoparticle size in biodistribution, magnetite nanoparticles coated with different polyethylene glycol (PEG) concentrations up to 10/1 PEG/iron oxide weight ratio in an ex situ manner. To predict the PEG-coated nanoparticle behavior in biological media, such as blood stream or tissue, colloidal stability evaluation was performed to estimate the coating endurance in different conditions. Accordingly, optical absorbance measurements were conducted in solutions with different values of pH and... 

    The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets

    , Article Biomedical Materials (Bristol) ; Volume 11, Issue 2 , 2016 ; 17486041 (ISSN) Mahmoudifard, M ; Soleimani, M ; Hatamie, S ; Zamanlui, S ; Ranjbarvan, P ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were... 

    Temporal activation of LRH-1 and RAR-γ in human pluripotent stem cells induces a functional naïve-like state

    , Article EMBO Reports ; Volume 21, Issue 10 , 2020 Taei, A ; Kiani, T ; Taghizadeh, Z ; Moradi, S ; Samadian, A ; Mollamohammadi, S ; Sharifi Zarchi, A ; Guenther, S ; Akhlaghpour, A ; Asgari Abibeiglou, B ; Najar Asl, M ; Karamzadeh, R ; Khalooghi, K ; Braun, T ; Hassani, S. N ; Baharvand, H ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Naïve pluripotency can be established in human pluripotent stem cells (hPSCs) by manipulation of transcription factors, signaling pathways, or a combination thereof. However, differences exist in the molecular and functional properties of naïve hPSCs generated by different protocols, which include varying similarities with pre-implantation human embryos, differentiation potential, and maintenance of genomic integrity. We show here that short treatment with two chemical agonists (2a) of nuclear receptors, liver receptor homologue-1 (LRH-1) and retinoic acid receptor gamma (RAR-γ), along with 2i/LIF (2a2iL) induces naïve-like pluripotency in human cells during reprogramming of fibroblasts,... 

    Synthesis of new hybrid nanomaterials: Promising systems for cancer therapy

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 6 , 2011 , Pages 806-817 ; 15499634 (ISSN) Adeli, M ; Kalantari, M ; Parsamanesh, M ; Sadeghi, E ; Mahmoudi, M ; Sharif University of Technology
    2011
    Abstract
    Polyrotaxanes consisting of cyclodextrin rings, polyethylene glycol axes and quantum dot (QD) stoppers were synthesized and characterized. The molecular self-assembly of polyrotaxanes led to spindlelike nano-objects whose shape, size and position were dominated by QD stoppers. Due to their well-defined molecular self-assemblies, carbohydrate backbone, high functionality and several types of functional groups together with the high luminescence yield, synthesized hybrid nanostructures were recognized as promising candidates for biomedical applications. The potential applications of the molecular self-assemblies as drug-delivery systems was investigated by conjugation of doxorubicin (DOX) to... 

    Synthesis of a novel magnetic starch-alginic acid-based biomaterial for drug delivery

    , Article Carbohydrate Research ; Volume 487 , 2020 Forouzandehdel, S ; Forouzandehdel, S ; Rezghi Rami, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The magnetic composite hydrogel was fabricated by the graft copolymerization of itaconic acid (IA) onto starch and Alginic acid in the presence graphene sheets (Gr) and Fe3O4 nanoparticles (Fe3O4@Gr-IA/St-Alg) for Guaifenesin (GFN) delivery and wound healing. The Fe3O4@Gr-IA/St-Alg biomaterial is a hydrogel network endowed the material with magnetic property. In addition, GFN not only achieved effectively bound to the magnetic hydrogel, but also released in a controlled manner. The using external magnetic field has significantly positive influence on the drug release rate. To close, these hydrogel drug carriers offer a favorable platform for magnetically targeted drug delivery as well as a... 

    Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol

    , Article Journal of Colloid and Interface Science ; Volume 345, Issue 1 , 2010 , Pages 64-71 ; 00219797 (ISSN) Jafari, T ; Simchi, A ; Khakpash, N ; Sharif University of Technology
    Abstract
    Core-shell iron-gold (Fe@Au) nanoparticles were synthesized by a facile reverse micelle procedure and the effect of water to surfactant molar ratio (w) on the size, size distribution and magnetic properties of the nanoparticles was studied. MTT assay was utilized to evaluate the cell toxicity of the nanoparticles. To functionalize the particles for MRI imaging and targeted drug delivery, the particles were coated by polyglycerol through capping with thiol followed by polymerization of glycidol. The characteristics of the particles were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometere (VSM), UV-visible spectroscopy, and Fourier... 

    Synthesis and cyto-genotoxicity evaluation of graphene on mice spermatogonial stem cells

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 146 , 2016 , Pages 770-776 ; 09277765 (ISSN) Hashemi, E ; Akhavan, O ; Shamsara, M ; Daliri, M ; Dashtizad, M ; Farmany, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The present study analyzed the dose-dependent cyto- and genotoxicity of graphene oxide and reduced graphene oxide on spermatogonial stem cells (SSCs) for the first time. The results showed that graphene oxide significantly increased oxidative stress at concentrations of 100 and 400 μg/ml, while low concentrations did not have a significant effect. In addition, according to the MTT assay, the cell number decreased in high-concentration (100 and 400 μg/ml) graphene oxide-treated samples compared to untreated cells. However, a reduced graphene-treated sample demonstrated a significant increase in cell number. Moreover, microscopic analysis found high concentrations of graphene nanosheets in... 

    Synergy between hemagglutinin 2 (HA2) subunit of influenza fusogenic membrane glycoprotein and oncolytic Newcastle disease virus suppressed tumor growth and further enhanced by Immune checkpoint PD-1 blockade

    , Article Cancer Cell International ; Volume 20, Issue 1 , August , 2020 Miri, S. M ; Ebrahimzadeh, M. S ; Abdolalipour, E ; Yazdi, M ; Hosseini Ravandi, H ; Ghaemi, A ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Newcastle disease virus (NDV) has shown noticeable oncolytic properties, especially against cervical cancer. However, in order to improve the spread rate and oncotoxicity of the virus, employment of other therapeutic reagents would be helpful. It has been shown that some viral fusogenic membrane glycoproteins (FMGs) could facilitate viral propagation and increase the infection rate of tumor cells by oncolytic viruses. Additionally, immune checkpoint blockade has widely been investigated for its anti-tumor effects against several types of cancers. Here, we investigated for the first time whether the incorporation of influenza hemagglutinin-2 (HA2) FMG could improve the oncolytic... 

    Supramolecular polycaprolactone nanocomposite based on functionalized hydroxyapatite

    , Article Journal of Bioactive and Compatible Polymers ; Volume 27, Issue 5 , January , 2012 , Pages 467-480 ; 08839115 (ISSN) Mehmanchi, M ; Shokrollahi, P ; Atai, M ; Omidian, H ; Bagheri, R ; Sharif University of Technology
    SAGE  2012
    Abstract
    Arms bearing ureido-pyrimidinone functional groups with self-association capability (through quadruple hydrogen bonds) were successfully grafted onto hydroxyapatite nanoparticles. The supramolecularly modified nanoparticles (nHApUPy) exhibited enhanced colloidal stability compared to the original hydroxyapatite nanoparticles and were uniformly dispersed in supramolecular polycaprolactone in PCL(UPy)2/HApUPy nanocomposites at different filler loadings. The combined atomic force microscopy, mechanical, and rheological analyses confirmed a high degree of compatibility of HApUPy nanoparticles with the polymer matrix. The temperature dependence of the supramolecular structure in PCL(UPy)2/HApUPy... 

    StrongestPath: a Cytoscape application for protein-protein interaction analysis

    , Article BMC bioinformatics ; Volume 22, Issue 1 , 2021 , Pages 352- ; 14712105 (ISSN) Mousavian, Z ; Khodabandeh, M ; Sharifi Zarchi, A ; Nadafian, A ; Mahmoudi, A ; Sharif University of Technology
    NLM (Medline)  2021
    Abstract
    BACKGROUND: StrongestPath is a Cytoscape 3 application that enables the analysis of interactions between two proteins or groups of proteins in a collection of protein-protein interaction (PPI) network or signaling network databases. When there are different levels of confidence over the interactions, the application is able to process them and identify the cascade of interactions with the highest total confidence score. Given a set of proteins, StrongestPath can extract a set of possible interactions between the input proteins, and expand the network by adding new proteins that have the most interactions with highest total confidence to the current network of proteins. The application can... 

    Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: A promising candidate for medical applications

    , Article Nanotechnology ; Volume 23, Issue 4 , 2012 ; 09574484 (ISSN) Behzadi, S ; Imani, M ; Yousefi, M ; Galinetto, P ; Simchi, A ; Amiri, H ; Stroeve, P ; Mahmoudi, M ; Sharif University of Technology
    2012
    Abstract
    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses  

    Producing functional recombinant human keratinocyte growth factor in Pichia pastoris and investigating its protective role against irradiation

    , Article Enzyme and Microbial Technology ; Volume 111 , April , 2018 , Pages 12-20 ; 01410229 (ISSN) Bahadori, Z ; Kalhor, H. R ; Mowla, S. J ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Keratinocyte Growth Factor (KGF) is a paracrine-acting, epithelial mitogen that plays a prominent role in the regeneration of damaged epithelial tissues. In spite of different attempts to produce recombinant human KGF in many organisms, including bacteria, mammalian cells, plant cells and insect cells; production of recombinant form suffers from lower yields and recovery relative to other recombinant proteins of similar size and properties. Due to many advantages of Pichia pastoris expression systems for producing industrial enzymes and pharmaceutical proteins, in this study P. pastoris was chosen as a host for KGF expression. For preparing human KGF coding sequence, MCF-7 cell line was... 

    Preparation and evaluation of bioactive and compatible starch based superabsorbent for oral drug delivery systems

    , Article Journal of Drug Delivery Science and Technology ; Volume 23, Issue 5 , 2013 , Pages 511-517 ; 17732247 (ISSN) Pourjavadi, A ; Ebrahimi, A. A ; Barzegar, S ; Sharif University of Technology
    2013
    Abstract
    Novel types of highly swelling hydrogels (superabsorbent) were prepared by grafting crosslinked poly acrylic acid-co-2-hydroxyethylmetacrylate (PAA-co-HEMA) chains onto starch through a free radical polymerization method. The effect of grafting variables (i.e., concentration of methylenebisacrylamide (MBA), acrylic acid/2-hydroxy methymetacrylate (AA/HEMA) weight ratio, ammonium persulfate (APS), starch, neutralization percent, were systematically optimized to achieve a hydrogel with a maximum swelling capacity. The superabsorbent (SAP) formation was confirmed by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The controlled-release behavior of... 

    Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies

    , Article International Journal of Biological Macromolecules ; Volume 167 , 2021 , Pages 881-893 ; 01418130 (ISSN) Mohseni, M ; S. A., A. R ; H Shirazi, F ; Nemati, N. H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Conductive self -electrical stimuli bioactive scaffolds could be used the potential for peripheral nerve regeneration with the maximum efficiency. To produce such conductive self-electrical stimuli bioactive scaffolds, chopped spun piezoelectric nanofibers of polyvinylidene fluoride/mesoporous silica nanoparticle (PVDF/MCM41) are prepared and incorporated in gellan/polyaniline/graphene (gellan/PAG) nanocomposites which have been previously prepared by incorporation of polyaniline/graphene (PAG) nanoparticles in gellan gel at 80 °C. Highly conductive binary doped polyaniline/graphene nanoparticles are prepared by chemical oxidative polymerization of aniline monomer using in-suite... 

    Preparation and biological evaluation of radiolabeled-folate embedded superparamagnetic nanoparticles in wild-type rats

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Volume 287, Issue 1 , January , 2011 , Pages 119-127 ; 02365731 (ISSN) Jalilian, A. R ; Hosseini Salekdeh, S. L ; Mahmoudi, M ; Yousefnia, H ; Majdabadi, A ; Pouladian, M ; Sharif University of Technology
    2011
    Abstract
    In this study, superparamagnetic iron oxide nanoparticles (SPION) embedded by folic acid (SPION-folate) were prepared by a modified co-precipitation method. The structure, size, morphology, magnetic property and relaxivity of the SPION-folate were characterized systematically by means of XRD, VSM, HRSEM and TEM and the interaction between folate and iron oxide (Fe3O 4) was characterized by FT-IR. The particle size was shown to be ≈5-10 nm. To ensure biocompatibility, the interaction of these SPION with mouse connective tissue cells (adhesive) was investigated using an MTT assay. Consequently, gallium-67 labeled nanoparticles ([67Ga]-SPION-folate) were prepared using 67Ga with a high labeling... 

    Polyrotaxane capped quantum dots as new candidates for cancer diagnosis and therapy

    , Article Journal of Nanostructured Polymers and Nanocomposites ; Volume 7, Issue 1 , 2011 , Pages 18-31 ; 17904439 (ISSN) Sarabi, R. S ; Sadeghi, E ; Hosseinkhani, H ; Mahmoudi, M ; Kalantari, M ; Adeli, M ; Sharif University of Technology
    2011
    Abstract
    Molecular self-assembly of cadmium selenide quantum dots-end-capped polyrotaxane hybrid nanostructures (PRCdSe QDs) was led to a new type of core-shell hybrid nanomaterials consisting of cadmium selenide quantum dot (CdSe QDs) core and polyrotaxane shell (PR@QDs). Structure of PR@QDs was characterized using various techniques. It has been observed that the size of PR@QDs was between 20-25 nm in which diameter of core and thickness of shell were between 15-20 and 2-3 nm, respectively. Short-term in vitro cytotoxicity tests, using MTT (3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, were conducted on mouse tissue connective fibroblast adhesive cell line (L929) in order to...