Loading...
Search for: nanoparticles
0.029 seconds
Total 1926 records

    Study on the Performance of Magnetic Nanoparticles in Hyper-thermic Treatment of Cancerous Tumors, by Heating an MRI Apparatus

    , M.Sc. Thesis Sharif University of Technology Payami Golhin, Zahra (Author) ; Outokesh, Mohammad (Supervisor) ; Nourani, Mohammad Reza (Supervisor)
    Abstract
    The aim of this study was to investigate the rate of increase in temperature of a phantom equivalent to body tissue by different groups of magnetic iron nanoparticles in the external magnetic field to kill cancer cells based on the hyperthermia method. To achieve this goal, three groups of dextran magnetic nanoparticles with different properties and reduced iron oxide-graphene oxide magnetic nanoparticles by M-rGO supercritical synthesis method were used. After XRD, FTIR, SEM, FESEM, VSM, TEM characterization tests, these materials were placed in a phantom made of agarose gel and with the same properties, in a magnetic field with fixed characteristics for all groups and during the process of... 

    Study on Thermodynamics of Iodine Vapor Adsorption on Cu Nanoparticles by Different Computational Approach

    , M.Sc. Thesis Sharif University of Technology Razavi, Maliheh (Author) ; Outokesh, Mohammad (Supervisor)
    Abstract
    Iodine isotopes are among the most significant medical radioisotopes with a wide range of applications in therapy and diagnosis. The I-131 isotope is usually synthesized by irradiation of natural tellurium in atomic reactors. But there is an alternative route in which this isotopes is produced along with two other significant medical radioisotopes (i.e. Mo-99, Xe-131) by neutronic irradiation of uranium in the reactors. To separate iodine isotopes especially in the extraction process of fission fragments, it is necessary to be selective adsorption of iodine on a selective adsorbent. One of the most selective adsorbent for this application is copper. The aim of this study is to compare the... 

    Study on the Efficiency of Graphene and Graphene Oxide-coated Iron Oxide Nanoparticles in the Treatment of Cancer Cells to Hyperthermia

    , M.Sc. Thesis Sharif University of Technology Azizi Darsara, Fatemeh (Author) ; Otukesh, Mohammad (Supervisor) ; Saligheh Rad, Hamid Reza (Co-Advisor)
    Abstract
    The main methods have been used clinically for cancer treatment are included: surgery, chemotherapy, radiation therapy and hyperthermia. Hyperthermia (heat therapy) treatment method in which by raising the temperature of the tumor it removed. Magnetic hyperthermia is known as a kind of hyperthermia that have been represent appropriate results. In this study, using iron oxide nanoparticle coated with graphene for cancer treatment under a magnetic field of the laser. In the first stage, graphene oxide nanosheets and nanoparticles Magntayt are synthesized by chemical oxidation and co-precipitation, respectively. At the end, the nanoparticles on the substrate of graphene layer is obtained... 

    Theoretical and Experimental Study of the Influence of Chemical Environments and Investigation of their Effects on the Kinetics of Redox Reactions using Metal and Metal Oxide Nanocatalyst

    , Ph.D. Dissertation Sharif University of Technology Kohantorabi, Mona (Author) ; Gholami, Mohammad Reza (Supervisor)
    Abstract
    Bimetallic nanoparticles with unique structure, synergistic effect between two metals, and the tunable physical/chemical properties have been used for catalysis. Various methods exist for the staibility, and improvement of the catalytic performance of nanoparticles. In this thesis, different co-catalysts were applied to increase tha staibility, and activity of nanoparticles and metal oxides. In this way, Ni-based bimetallic nanoparticles including CuNi, CoNi, and AgNi, and AgPt with different concentrations were synthesized on the cerium oxide nanorods derived from cerium metal-organic frameworks and magnetic graphene oxide nanosheets, respectively and characterized. The catalytic... 

    Experimental Study of Formation Damage Reduction during Drilling of Horizontal Wells Using Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Shojaei, Nima (Author) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    One the basic challenges during drilling of both vertical and horizontal wellbores is due to mud filtrate invasion into the formation. Addition of nanoparticles to composition of drilling fluid has been recognized as a measure of control and reduction of filtrate invasion. Despite notable advances in formulation of nano-enhanced drilling fluids, effects of surface wettability of nanoparticles on their performance have not been studied with any precision. Moreover, return permeability of a grain packed porous media after extreme invasion by mud filtrate has not been experimentally measured in a radial system, yet. The last but not least, Generation and development of mud cake opposite the... 

    Experimental Study of Nanoparticles Application to Enhance Properties of Water-baseddrilling Fluid

    , M.Sc. Thesis Sharif University of Technology Ziaee, Hossein (Author) ; Rashtchian, Davood (Supervisor) ; Hazanfari, Mohammad Hossein (Supervisor)
    Abstract
    One of the most well-established methods of increasing oil production rate from existing fields is infill drilling. However, drilling these depleted reservoirs with conventional high density drilling fluids may cause formationdamage problems and subsequently reduce the expected production rate. To overcome these technical problems, the use of lightweight aphron based fluids isincreasing rapidly in the petroleum industry. Rheological and fluid loss performance of aphron based drilling fluids can be improved in the presence of nanoparticles; however, very limited information is available in this field. Moreover, a thorough knowledge about the hydrodynamic flow behavior of drilling fluids... 

    Experimental and Modeling Study of Enhanced Oil Recovery Improvement during Nanosilica Particle Flooding to Oil Reservoirs

    , M.Sc. Thesis Sharif University of Technology Nejatinezhad, Atefe (Author) ; Vosoughi, Manuchehr (Supervisor) ; Ghazanfari, Mohammad Hassan (Supervisor) ; Masihi, Mohsen (Supervisor)
    Abstract
    Recent studies in nanotechnology field have shown this technology could solve many challenges and needs in oil and gas industry. As yet, many applications of nanoparticles in enhanced oil recovery have been reported. One of the most important applications is wettability alteration due to presence of nanoparticles in injecting fluid, which has recently been studied by several research groups. These studies indicate that, presence of nanoparticles in injecting water would improve oil recovery. However, there is no adequate information about the mechanisms affecting fluid flow in reservoir rock and its mathematical modeling.The aim of this project is to evaluate the effect of injection of... 

    Experimental Investigation of the Impact of Nanoparticles on Efficiency of Surfactant Flooding to Heavy Oil in Fractured Reservoirs Using Micromodel Apparatus

    , M.Sc. Thesis Sharif University of Technology Javadi Far, Ali Akbar (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Ayatollahi, Shahab (Supervisor) ; Roosta Azad, Reza (Supervisor)
    Abstract
    Today, due to limited number of light oil reservoirs, enhanced recovery from heavy oil reservoirs is taken into consideration. During the early production from heavy oil reservoirs, due to high viscosity, only a small amount (about 5%) of the oil can be produced; also after water injection operation due to unfavorable mobility ratio of water and oil, sorely more than about 10% of the original oil can be produced. On the other hand, fractured reservoirs represent about 20% of the world's oil reserves, while over 60% of the world's remaining oil reserves are in fractured reservoirs. Water flooding process leaves very high amounts of oil as remaining oil in these reservoirs too. One of the... 

    Pore-Scale Experimental Study of Foam/Nano-Foam Flooding to Heavy oil in Heterogeneous Five-Spot System: Stability Analysis and Displacement Mechanisms

    , M.Sc. Thesis Sharif University of Technology Suleymani, Mohammad (Author) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    Foam injection for enhanced oil recovery is concerned by petroleum engineers because it decreases adverse effects of fingering and gravity segregation caused by the injected fluid .Obviously foam stability is an important factor in the efficiency of this process. So investigating it is an imperative. One of the ways that less studied and can improve foam stability is using of nanoparticles. In this project effect of nanoparticles on foam stability and displacement mechanism during foam flooding has been discussed.
    Study consisted of two sets of experiments. In the first part, the static foam stability in the presence of silica nanoparticles has been investigated. Also influence of... 

    Experimental Investigation of Improvement of Stability and Performance of Foam Using Nano-particles to Enhance Oil Recovery

    , M.Sc. Thesis Sharif University of Technology Veyskarami, Maziar (Author) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    Using foam for reducing undesirable effects of fingering and gravity segregation in enhanced oil recovery through gas injection has attracted a rapidly increasing interest in recent years. Lack of stability of foam often limits its application. However there is a lack of systematic study of effects of unmodified and in-situ modified silica nano-particle on foam stability and foam behavior in the presence and absence of oil and also polymer effects from the prospective of analysis of foam dynamic stability, size of foam bubbles, and foam flow behavior in Hele – Shaw cell. Main objectives of this study are mechanistic investigation of effects of polymer – surfactant systems and in-situ... 

    A Practical Examination of the Antibacterial and Absorption Effect of Bioceramic Apatite-Coated TiO2 as a Modified Nanophotocatalyst

    , M.Sc. Thesis Sharif University of Technology Azimzadeh Irani, Maryam (Author) ; Gholami, Mohammad Reza (Supervisor) ; Haghighi, Saeed (Co-Advisor)
    Abstract
    Ag / AgCl /TiO2 , 2 Ap / Ag / AgCl /TiO , 2 AgI /TiO and 2 Ap / AgI /TiO were prepared by the deposition-precipitation method on 2TiO (P25) nanoparticles and their photocatalyctic activities have been investigated under visible light and dark environments. Cationic surfactant plus 2 PVPI (topical solution and dry powder) as an iodine ion source and nonionic surfactant plus KI as an iodide ion source were used to prepar 2 AgI /TiO . In less than 30 minutes, 2 AgI /TiO which has been resulted from combination of cationic surfactant and 2 PVPI showed high efficiency on Escherichia coli under visible light when small quantities of it is used . However, AgCl sample prepared with cationic... 

    Study and Preparation of Coated Drug by PEG Biopolymer (PEGylation) for Release Controlling

    , M.Sc. Thesis Sharif University of Technology Tavakoli Naeini, Ashkan (Author) ; Vossoughi, Manoochehr (Supervisor) ; Sarbolouki, Mohammad Nabi (Supervisor)
    Abstract
    In the first part of this work, citric acid monomer was selected to produce dendrimer through the divergent method using logical conditions (for controlling its functional groups) on the base of poly (ethylene glycol) as the core. Triblock copolymers (ABA-type) of citric acid and poly (ethylene glycol) (PCA-PEG-PCA) as biocompatible compounds were synthesized in four different molecular weights and applied as nanocarriers. The structure definition of the molecules and nanoparticles were carried out using different spectroscopy methods. Diameter of the synthesized copolymers was investigated using dynamic light scattering (DLS) experiments and transmission electron microscopy (TEM) and it was... 

    Experimental Investigation of a Nnanofibrous Membrane Preparation for Dye Removal from Colored Wastewater

    , Ph.D. Dissertation Sharif University of Technology Hosseini, Abolhassan (Author) ; Vossoughi, Manouchehr (Supervisor) ; Mahmoodi, Niyaz Mohammad (Supervisor)
    Abstract
    In this research, an adsorptive affinity membrane has been prepared based on the combination of the nanofiber structure’s intrinsic characteristic in the dye adsorption and its membrane filtration properties. Electrospinning method has been used to prepare chitosan/poly(vinyl alcohol) (PVA) nanofibers. The morphology and properties of the prepared nanofibrous membranes were characterized using Fourier-transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FE-SEM), image processing, atomic force microscopy (AFM), and thermogravimetric analysis (TGA). Also, the major drawback of electrospun nanofibrous membranes (ENMs) is their low mechanical resistance. So,... 

    Experimental Study of Silver Based Nanostructures Biocompatibility for Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Aghababaie Khouzani, Zahra (Author) ; Vossoughi, Manouchehr (Supervisor) ; Yaghmaei, Soheyla (Supervisor)
    Abstract
    Acceleration of healing process for crucial wounds has been remained a challenging issue and it is critical to improve treatments against infection during wound healing period. Among various antimicrobial agents, silver components has been extensively since they are resistant against a wide range of bacteria. In this study, we developed electrospun mats composed of Polycaprolactone (PCL) and Polyvinyl alcohol (PVA) loaded with major silver components using co-electrospinnig method. Chitosan- Ag nanoparticles was synthesized using chitosan via heating prior to electrospinning. Various amounts of Silver components including Ag+, Silversulfadiazine (SSD) and Chitosan- Ag NPs were added to PVA... 

    Experimental Studies for Lactase Immobilization on the Polymer base and Characterising

    , M.Sc. Thesis Sharif University of Technology Derakhshan, Elahe (Author) ; Yaghmaei, Soheyla (Supervisor)
    Abstract
    Immobilization of β-D-galactosidase represents an important approach for development of lactose hydrolysis technology.Chitosan proved to be an excellent carrier for β-Dgalactosidase immobilization, by both covalent binding and sol-gel entrapment combined with adsorption. Among different preparation methods of chitosan support particles for covalent binding, emulsion cross-linking was the most efficient, producing narrow-sized microspheres, without aggregation.The best process parameters of β-D-galactosidase immobilization by covalent coupling on chitosan microspheres were found as 3% glutaraldehyde cross-linker concentration, enzyme loading of 27 mg protein/g dry support, 6 h reaction time,... 

    studying the Effect of Adding Nanoparticles in Polymer/salt Aqueous Two Phase Systems for Separating of Alpha-amylase Enzyme

    , Ph.D. Dissertation Sharif University of Technology Dehnavi, Mohsen (Author) ; Vossoughi, Manoochehr (Supervisor) ; Pazuki, Gholamreza (Supervisor)
    Abstract
    The effects of adding nanoparticles in partitioning of α-amylase in polymer/salt aqueous two phase system (ATPS) was studied in this research. First the binodal curves of magnesium sulfate salt with PEGs 2000,3000,4000,6000 and 10000 at 23 ° C has been plotted and the suitable system which was PEG 6000/ magnesium sulfate has been selected for studying the partitioning of enzyme. Thereupon the partition coefficient of α-amylase was measured and then effect of adding silica and graphene oxide nanoparticles was investigated. It was observed that nanoparticles caused a dramatic increase in partition coefficient and yield recovery (of top phase). For further investigation the partitioning of... 

    Modeling and Simulation of Hollow Fiber Membrane Contactor in Presence of Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Darabi, Mohammad (Author) ; Molaei Dehkordi, Asghar (Supervisor) ; Safekordi, Ali Akbar (Supervisor)
    Abstract
    In this study, a comprehensive 2D mathematical model has been developed for the simulation of physical and chemical absorption of carbon dioxide in hollow fiber membrane contactors in the presence of nanoparticles. The model were developed by considering molecular diffusion in radial and axial directions as well as non-wetting conditions. Carbon dioxide absorption was simulated from a gas mixture containing carbon dioxide and air, that flows in the shell. Also, absorbent containing nanoparticles flows in tube side and counter currently. Effects of presence of nanoparticles were modeled by taking into account two prominent mechanisms proposed in the literature for mass transfer enhancement in... 

    Modelling and Simulation of Heat Transfer in the Moicrowave Sintering Process of Uranium Dioxide

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Mustafa (Author) ; Outokesh, Mohammad (Supervisor) ; Mousavian, Khalil (Supervisor)
    Abstract
    One of the steps in the production of nuclear fuel pellets used in the core of a nuclear reactor is sintering. Sintering means the consolidation of a pressed powder sample into an integrated solid. This process can be done in different ways, such as traditional sintering, microwave, spark plasma, etc. In the process of fabrication of nuclear fuel pellets, after producing uranium dioxide in powder form and making corrections on the size distribution of powder grains, it would be nolded and then sintered. In this research, the temperature evolution of the green pellets introduced to microwave heating were investigated. In this report, a brief overview of the principles of microwave heating is... 

    Modeling Optomechanical Behavior of Optical Metasurfaces Subject to Light and Elastic Deformation

    , M.Sc. Thesis Sharif University of Technology Talebi Habibabadi, Sajjad (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Optical metasurfaces are 2D structures of a repetitive arrangement of a number of nanoparticles that are artificially constructed and do not exist in nature. Important applications of optical metasurfaces are meta lenses, flexible solar cells and extremely small antennas. Fabricating surfaces with nanoparticles of proper geometry under light radiation along with elastic deformation, we can have optical metasurfaces with selective reflection or transparency in the visible spectrum. The aim of this project is modeling of an optical metasurface with elastic deformation leading to change of color and transparency. For this purpose, assuming vertical light radiation and linear polarization, we... 

    Nanoparticle Translocation Across a Lipid Bilayer:An Investigation into Size and Shape

    , M.Sc. Thesis Sharif University of Technology Shadmani, Peyman (Author) ; Naghdabadi, Reza (Supervisor) ; Montazeri Hedesh, Abbas (Co-Advisor)
    Abstract
    In recent years, application of nanotechnology in medicine is growing rapidly, specially, in the area of drug delivery. One of most import applications of nanotechnology is the using of nanoparticles as a carrier in targeted drug delivery systems. Simulation of drug delivery and prediction of drug release are developing in experimental and industrial areas. Mathematical modeling is used in drug delivery systems because they are time and cost saving and also can be used to predict drug behavior. The aim of this research, is to provide a framework for designing nano drug carriers. To this end, uptake of nanoparticles into different types of cells with different characteristics, in different...