Loading...
Search for: non-destructive
0.007 seconds
Total 38 records

    Laboratory and in situ investigation of the compressive strength of CFRD concrete

    , Article Construction and Building Materials ; Volume 242 , 2020 Vatani Oskouei, A ; Nazari, R ; Houshmand Khaneghahi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    One of the most essential and costly stages in Concrete Face Rockfill Dams (CFRD) construction is to implement the concrete at the upstream face of the dam without joints. As the face concrete is considered as the most integral part to prevent water penetration in CFRDs, it's quality control is of paramount importance. One of the conventional approaches for quality control of the concrete which is used in CFRD is the compressive strength of laboratory samples. The comparison of laboratory and in situ measurements provides information about the accuracy of the obtained results. This research investigates the correlation of concrete compressive strength determined by using different methods in... 

    Using metaheuristic algorithms to improve the estimation of acidity in Fuji apples using NIR spectroscopy

    , Article Ain Shams Engineering Journal ; Volume 13, Issue 6 , 2022 ; 20904479 (ISSN) Pourdarbani, R ; Sabzi, S ; Rohban, M. H ; García Mateos, G ; Paliwal, J ; Molina Martínez, J. M ; Sharif University of Technology
    Ain Shams University  2022
    Abstract
    This study focuses on the spectrochemical estimation of pH and titratable acidity (TA) of apples of Fuji variety at different stages of ripening. A novel approach is proposed for near-infrared (NIR) spectral analysis using hybrid machine learning methods that combine artificial neural networks (ANN) and metaheuristic algorithms. One hundred twenty samples were collected at three ripening stages and spectral data within two bands of NIR were extracted from each sample to predict the acidity properties. Alternatively, the 4 most effective wavelengths were also selected using a hybrid of ANN and the cultural algorithm. The experimental results prove that the models using spectral bands and the... 

    Machine learning-based seismic damage assessment of non-ductile RC beam-column joints using visual damage indices of surface crack patterns

    , Article Structures ; Volume 45 , 2022 , Pages 2038-2050 ; 23520124 (ISSN) Hamidia, M ; Mansourdehghan, S ; Asjodi, A. H ; Dolatshahi, K. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    After a significant earthquake, the updated status of the structural elements is usually determined based on a qualitative visual inspection. Although visual inspection provides a prompt assessment of the damaged elements, the output of this subjective method is influenced by the experience and decision of a trained inspector, which may vary from case to case. In this study, an innovative machine learning-based procedure is developed to automate damage state identification of non-ductile reinforced concrete moment frames (RCMFs) utilizing visual indices of crack patterns of the concrete surface. An extensive database including 264 surface crack patterns is constructed corresponding to 61... 

    Self-induced backaction in optical waveguides

    , Article Optics Express ; Volume 30, Issue 24 , 2022 , Pages 42967-42981 ; 10944087 (ISSN) Abbassi, M. A ; Mehrany, K ; Sharif University of Technology
    Optica Publishing Group (formerly OSA)  2022
    Abstract
    In this paper, we study the backaction effect on the force exerted upon Rayleigh particles in guided structures. We show that the backaction becomes stronger as the group velocity of the guided modes is decreased, which is not unexpected since the fall of group velocity increases the interaction time between the particle and the electromagnetic field. Interestingly, the sign of the group velocity affects the pushing and pulling nature of the exerted electromagnetic force. We specifically investigate the case of a single mode optical waveguide both in the propagating and evanescent regimes, and show that the backaction enables us to enhance the ratio of the potential depth to the trapping... 

    Interaction of a plane progressive sound wave with anisotropic cylindrical shells

    , Article Composite Structures ; Vol. 116, issue. 1 , September–October , 2014 , pp. 747-760 ; ISSN: 02638223 Rajabi, M ; Behzad, M ; Sharif University of Technology
    Abstract
    An exact analysis based on the wave function expansion is carried out to study the scattering of a plane harmonic acoustic wave incident at an arbitrary angle upon an arbitrarily thick helically filament-wound (anisotropic) cylindrical shell submerged in and filled with compressible ideal fluids. Using the laminated approximation method, a modal state equation with variable coefficients is set up in terms of appropriate displacement and stress functions and their cylindrical harmonics to present an analytical solution based on the three-dimensional exact equations of anisotropic elasticity. Taylor's expansion theorem is then employed to obtain the solution to the modal state equation,... 

    Flaw characterization in ultrasonic non-destructive testing method using exponential modeling

    , Article Conference Record - IEEE Instrumentation and Measurement Technology Conference ; 2013 , Pages 1676-1679 ; 10915281 (ISSN) ; 9781467346221 (ISBN) Ravanbod, H ; Karimi, F ; Amindavar, H ; Sharif University of Technology
    2013
    Abstract
    Determining the shape, area, volume, and direction of flaws using ultrasonic imaging of metallic pieces, is a method estimating the severity of their defects. Different methods are used to process ultrasound images. Among these methods are spectral analyses, statistical, mathematical and intelligent methods. Within each of these, there are some advantages as well as limitations. Prony algorithm, which has been used as a parametric method for extracting exponential components of a signal, has several applications in signal modeling, system identification and classification. In this paper, after simulating pieces of oil pipeline, digital Wavelet transform has been used to reduce the noise of... 

    Influence of different types of nano-SiO2 particles on properties of high-performance concrete

    , Article Construction and Building Materials ; Volume 113 , 2016 , Pages 188-201 ; 09500618 (ISSN) Khaloo, A ; Mobini, M. H ; Hosseini, P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The aim of this study was to evaluate the effects of applying low replacement ratios (0.75% and 1.50% of the binder weight) of nano-SiO2 particles with different specific surface areas (200 and 380 m2/g) on the properties of high-performance concrete (HPC). Mechanical (compressive and splitting tensile strengths), electrical resistivity, non-destructive (ultrasonic pulse velocity), and microstructural (mercury intrusion porosimetry, X-ray diffraction, and scanning electron microscopy) tests were conducted to investigate the macroscopic and microscopic effects of nano-SiO2 particles on HPC characteristics. The results indicated that the performance of nano-SiO2 particles significantly... 

    Optimizing the mixture design of polymer concrete: An experimental investigation

    , Article Construction and Building Materials ; Volume 167 , 2018 , Pages 185-196 ; 09500618 (ISSN) Jafari, K ; Tabatabaeian, M ; Joshaghani, A ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Over the last few decades, polymer concrete (PC) has been finding use in quick repairing of concrete structures. However, there have been only few studies on the mechanical behavior of PC. The aim of this study is to evaluate the mechanical behavior of PC using destructive and non-destructive tests (NDT). The mixtures were prepared with three different polymer ratios (10%, 12%, and 14%) and two different coarse aggregate sizes (4.75–9.5 mm and 9.5–19 mm). The samples were subsequently tested under three different temperatures (−15 °C, +25 °C, and +65 °C). The Taguchi method and analysis of variance (ANOVA) were used to optimize PC mixes based on the compressive, splitting-tensile, and... 

    Advanced damage detection technique by integration of unsupervised clustering into acoustic emission

    , Article Engineering Fracture Mechanics ; 2018 ; 00137944 (ISSN) Behnia, A ; Chai, H. K ; GhasemiGol, M ; Sepehrinezhad, A ; Mousa, A. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The use of acoustic emission (AE) technique for damage diagnostic is typically challenging due to difficulties associated with discrimination of events that occur during different stages of damage that take place in a material or a structure. In this study, an unsupervised kernel fuzzy c-means pattern recognition analysis and the principal component method were utilized to categorize various damage stages in plain and steel fiber reinforced concrete specimens monitored by AE technique. Enhancement of the discrimination and characterization of damage mechanisms were achieved by processing time and frequency domain data. Both domains (time and frequency) were taken into account to propose new... 

    Advanced damage detection technique by integration of unsupervised clustering into acoustic emission

    , Article Engineering Fracture Mechanics ; Volume 210 , 2019 , Pages 212-227 ; 00137944 (ISSN) Behnia, A ; Chai, H. K ; GhasemiGol, M ; Sepehrinezhad, A ; Mousa, A. A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The use of acoustic emission (AE) technique for damage diagnostic is typically challenging due to difficulties associated with discrimination of events that occur during different stages of damage that take place in a material or a structure. In this study, an unsupervised kernel fuzzy c-means pattern recognition analysis and the principal component method were utilized to categorize various damage stages in plain and steel fiber reinforced concrete specimens monitored by AE technique. Enhancement of the discrimination and characterization of damage mechanisms were achieved by processing time and frequency domain data. Both domains (time and frequency) were taken into account to propose new... 

    Effect of polymer content and temperature on mechanical properties of lightweight polymer concrete

    , Article Construction and Building Materials ; Volume 260 , 2020 Heidarnezhad, F ; Jafari, K ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This study investigates the mechanical properties of lightweight polymer concrete (LWPC) containing four different polymer ratios (10%, 12%, 14%, and 16%) tested at three different temperatures (−15 °C, +5 °C, and +25 °C) using destructive and non-destructive tests. In addition, a series of expressions are suggested to predict the splitting-tensile, flexural and impact strength of LWPC based on the main parameters and compressive strength. The analysis of variance (ANOVA) method was also used to determine relative contributions of the experimental parameters. The results of the destructive tests show that increasing the polymer ratio caused an increase in the compressive, splitting-tensile,... 

    Design and Optimization of T1 Flip Flop in Bi-Directional RSFQ Logic

    , M.Sc. Thesis Sharif University of Technology Jabbari, Tahereh (Author) ; Fardmanesh, Mehdi (Supervisor)
    Abstract
    Superconducting Rapid Single Flux Quantum (RSFQ) Logic, is very fast (up to about THz) and ultra low power circuit technology and is the most recent and fastest superconducting logic family. So far one of the difficulties in RSFQ logic is associated to reading the circuit states in particular flip flops. In prevalent RSFQ logic using T1 Flip Flop gate instead of the T Flip Flop, the non-destructive reading of the registered bit is possible. Through this approach, it also has some limits in particular circuits. Another idea of resolving this issue, is considering the very new bi-directional RSFQ logic, which is based on alternative changing the bias current through the Josephson junctions.... 

    FEM enhanced signal processing approach for pattern recognition in the SQUID based NDE system

    , Article Journal of Physics: Conference Series, 13 September 2009 through 17 September 2009 ; Volume 234, Issue PART 4 , 2010 ; 17426588 (ISSN) Sarreshtedari, F ; Jahed, N. M. S ; Hosseni, N ; Pourhashemi, A ; Banzet, M ; Schubert, J ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    An efficient Non-Destructive Evaluation algorithm has been developed in order to extract the required information for pattern recognition of defects in the conductive samples. Using high-Tc gradiometer RF-SQUIDs in unshielded environments and incorporating an automated two dimensional non-magnetic scanning robot, samples with different intentional defects have been tested. We have used a developed noise cancellation approach for the improvement of the effectiveness of the used inverse-problem technique. In this approach we have used a well examined Finite Element Method (FEM) to apply a noise reduction filtering on the obtained raw magnetic image data before incorporating the signal... 

    THz non-destructive testing for covered defects

    , Article 4th International Conference on Millimeter-Wave and Terahertz Technologies, MMWaTT 2016, 20 December 2016 through 22 December 2016 ; 2017 , Pages 45-47 ; 21570965 (ISSN); 9781509054145 (ISBN) Panahi, O ; Kheyrollahi Kouhanestani, M ; Yahyaei, B ; Mousavi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, a pulsed THz imaging system in normal geometry is presented experimentally and the effect of placing a pinhole in front of a covered sample on image quality has been investigated too. Also, the improvement of image quality by using ray transfer matrix is described theoretically. Finally, by using contour system the results are evaluated and the accuracy of THz imaging system is tested. © 2016 IEEE  

    Frozen leg operation of a three-phase dual active bridge DC/DC converter at light loads

    , Article Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC ; Volume 2018-March , 18 April , 2018 , Pages 3385-3391 ; 9781538611807 (ISBN) Haghbin, S ; Blaabjerg, F ; Yazdani, F ; Bahman, A. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    A three-phase dual active bridge (DAB) converter is designed and constructed as the DC/DC stage of a 50 kW fast charger station. Recently introduced 300A SiC power modules and drivers are utilized in the converter to obtain a high efficiency. Each module has two interconnected switches with anti-parallel diodes resembling a converter leg. It is observed that the driver halts the module operation as a result of protective actions such as over-current, gate under-voltage, or gate overvoltage. In such case the module operates as a leg with two diodes until an external hardware signal resets the driver. The aim of this paper is to provide analysis, simulation and experiments for a three-phase... 

    Damage detection of L-shaped beam structure with a crack by electromechanical impedance response: analytical approach and experimental validation

    , Article Journal of Nondestructive Evaluation ; Volume 39, Issue 2 , 2020 Hamzeloo, S. R ; Barzegar, M ; Mohsenzadeh, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Damage detection and structural health monitoring using the electromechanical impedance method has been accepted as an effective technique between various approaches of nondestructive evaluation. Many efforts have been made on experimental methods for obtaining the impedance of structures. However, expensive experimental methods encourage researchers to develop theoretical models. In this paper, a new theoretical model is developed for damage detection of L-shaped beams, which are basic components in frame structures, with an embedded piezoelectric wafer active sensor. For this purpose, a chirp signal of voltage is used to activate a piezoelectric patch for inducing local strains that lead... 

    Acoustic simulation of ultrasonic testing and neural network used for diameter prediction of three-sheet spot welded joints

    , Article Journal of Manufacturing Processes ; Volume 64 , 2021 , Pages 1507-1516 ; 15266125 (ISSN) Ghafarallahi, E ; Farrahi, G. H ; Amiri, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ultrasonic Testing (UT) is one of the most common types of nondestructive methods that is being used in various industries, especially in the automotive industry. In this paper, qualitative and quantitative control of resistance spot welds on three-sheet joints was studied. Initially, mathematical model of ultrasonic waves was extracted for triple sheet joints. Then, acoustic simulation of ultrasonic testing on spot welds was performed using Finite Element Method (FEM). Afterwards, A Multilayer Perceptron (MLP) neural network was used to classify spot welds based on their diameter. There was a mean error of 20.9 % between peak amplitudes of numerical and theoretical models which the most... 

    Optimization of SQUID NDE for Detection of the Defects in Metallic Samples

    , Ph.D. Dissertation Sharif University of Technology Sarreshtedari, Farrokh (Author) ; Fardmanesh, Mahdi (Supervisor) ; Kokabi, Hamid (Supervisor)
    Abstract
    The purpose of this thesis is the incorporation of RF SQUID ultra-sensitive magnetic sensors in an implemented SQUID NDE system and also the development of associated inverse solution algorithms for the detection of defects in metallic samples. The system is based on the induction of Eddy currents and the incorporation of SQUIDs for precise detection of the magnetic field anomalies related to the defects in the sample. One of the major parts of the system is the highly stable, multi-channel RF SQUID readout system which has been designed and implemented with novel features for this project. For the magnetic inverse analysis of our SQUID NDE measurements, new models have been presented for... 

    An appropriate procedure for detection of journal-bearing fault using power spectral density, K-nearest neighbor and support vector machine

    , Article International Journal on Smart Sensing and Intelligent Systems ; Volume 5, Issue 3 , 2012 , Pages 685-700 ; 11785608 (ISSN) Moosavian, A ; Ahmadi, H ; Tabatabaeefar, A ; Sakhaei, B ; Sharif University of Technology
    2012
    Abstract
    Journal-bearings play a significant role in industrial applications and the necessity of condition monitoring with nondestructive tests is increasing. This paper deals a proper fault detection technique based on power spectral density (PSD) of vibration signals in combination with K-Nearest Neighbor and Support Vector Machine (SVM). The frequency domain vibration signals of an internal combustion engine with three journal-bearing conditions were gained, corresponding to, (i) normal, (ii) corrosion and (iii) excessive wear. The features of the PSD values of vibration signals were extracted using statistical and vibration parameters. The extracted features were used as inputs to the KNN and... 

    The finite element simulation of lamb wave propagation in a cracked structure with coupled filed elements

    , Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 618-623 ; 10226680 (ISSN) ; 9783037853634 (ISBN) Tashi, S ; Abedian, A ; Khajehtourian, R ; Singapore Institute of Electronics (SIE); Science and Engineering Institute (SCIEI) ; Sharif University of Technology
    2012
    Abstract
    Crack detection by Piezoelectric Wafer Active Sensors (PWAS) is one of the emerging methods of Non-destructive Evaluation (NDE). These sensors can assess the health state of the structure in far filed through the analyzing the high frequency Lamb wave propagation. As PWAS is the essential part of this method, simulation and modeling of these sensors and their interaction with the host structure, strongly affect the accuracy of results. In this study, unlike the previous works, in which some certain areas of the host structure were considered as a sensor and actuator, the direct simulation of electro-mechanical interaction of the PWAS and the host structure is modeled among modeling the PWAS...