Loading...
Search for: oxidation
0.01 seconds
Total 2320 records

    Monolithic quantum dot sensitized solar cells

    , Article Journal of Physics D: Applied Physics ; Volume 46, Issue 48 , December , 2013 ; 00223727 (ISSN) Samadpour, M ; Ghane, Z ; Ghazyani, N ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    2013
    Abstract
    We report a new design of solar cells based on semiconductor quantum dots (QDs), monolithic quantum dot sensitized solar cells (MQDSCs). MQDSCs offer the prospect of having lower cost and a simpler manufacturing process in comparison to conventional double substrate QDSCs. Our proposed monolithic QDSCs have a triple-layer structure, composed of a CdS sensitized mesoporous TiO2 photoanode, a scattering layer made by a core-shell structure of TiO 2/SiO2, and a carbon active/graphite counter electrode layer, which are all deposited on a single fluorine doped tin oxide (FTO) glass substrate. Mesoporous TiO2 was sensitized with CdS QDs by successive ionic layer adsorption and reaction. Here,... 

    Vanadium pentoxide catalyst over carbon-based nanomaterials for the oxidative dehydrogenation of propane

    , Article Industrial and Engineering Chemistry Research ; Volume 52, Issue 46 , 2013 , Pages 16128-16141 ; 08885885 (ISSN) Fattahi, M ; Kazemeini, M ; Khorasheh, F ; Rashidi, A. M ; Sharif University of Technology
    2013
    Abstract
    A series of V2O5 catalysts supported on multiwall carbon nanotube (MWCNT), single wall carbon nanotube (SWCNT), and graphene were synthesized by hydrothermal and reflux methods for oxidative dehydrogenation of propane (ODHP) to propylene. The catalysts were characterized by techniques including the BET surface area measurements, XRD, FTIR, H2-TPR, NH3-TPD, FESEM, and UV-vis diffuse reflectance spectroscopy. The performance of the catalysts and the supports were subsequently examined in a fixed bed reactor. The main products were propylene, ethylene and CO x. The vanadium catalyst supported on graphene with C/V molar ratio of 1:1 synthesized through the hydrothermal method had the best... 

    Flash photo stimulation of human neural stem cells on graphene/TiO 2 heterojunction for differentiation into neurons

    , Article Nanoscale ; Volume 5, Issue 21 , 2013 , Pages 10316-10326 ; 20403364 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    For the application of human neural stem cells (hNSCs) in neural regeneration and brain repair, it is necessary to stimulate hNSC differentiation towards neurons rather than glia. Due to the unique properties of graphene in stem cell differentiation, here we introduce reduced graphene oxide (rGO)/TiO2 heterojunction film as a biocompatible flash photo stimulator for effective differentiation of hNSCs into neurons. Using the stimulation, the number of cell nuclei on rGO/TiO2 increased by a factor of ∼1.5, while on GO/TiO2 and TiO2 it increased only ∼48 and 24%, respectively. Moreover, under optimum conditions of flash photo stimulation (10 mW cm-2 flash intensity and 15.0 mM ascorbic acid in... 

    The effect of gas mixture of post-oxidation on structure and corrosion behavior of plasma nitrided AISI 316 stainless steel

    , Article Applied Surface Science ; Volume 283 , 2013 , Pages 584-589 ; 01694332 (ISSN) Karimzadeh, N ; Moghaddam, E. G ; Mirjani, M ; Raeissi, K ; Sharif University of Technology
    2013
    Abstract
    In this research, microstructure and corrosion properties of plasma nitriding and post-oxidation treated AISI 316 austenitic stainless steel have been studied. The plasma nitriding treatment was carried out at 450 C for 5 h in a D.C. plasma setup with a gas mixture of 25% N2-75% H2 followed by post-oxidation in gas mixtures of O2/H2: 1/3, 1/5, 1/9 and 1/12 for 30 min. The treated samples were characterized by SEM, XRD and roughness testing. Potentiodynamic and cyclic polarization tests were also employed to evaluate the corrosion resistance of the samples. The results showed that plasma nitriding treatment decreases corrosion resistance of the steel substrate. However, post-oxidizing... 

    Remedial effects of metal oxide nanoparticles to treat suspension transport in saturated porous media

    , Article SPE - European Formation Damage Conference, Proceedings, EFDC ; Volume 1 , 2013 , Pages 478-488 ; 9781627486101 (ISBN) Arab, D ; Pourafshary, P ; Ayatollahi, S ; Habibi, A ; Sharif University of Technology
    2013
    Abstract
    Hydrocarbon production decline as a result of formation damage caused by fines migration has been widely observed in laboratory corefloods and natural flows in porous media. Permeability impairment due to fines migration is explained by different capture mechanisms of already released particles at some pore sites. Preventing detachment of in-situ particles from the rock surface during enhanced oil recovery (EOR) agent injection into the porous media has been reported recently. In this experimental study, the effect of five types of metal oxide nanoparticles; γ-AI2O3, ZnO, CuO, MgO and SiO: to adsorb the fine particles existing in the flowing suspension has been investigated. In each test,... 

    Fixed-bed multi-tubular reactors for oxidative dehydrogenation in ethylene process

    , Article Chemical Engineering and Technology ; Volume 36, Issue 10 , 2013 , Pages 1691-1700 ; 09307516 (ISSN) Fattahi, M ; Kazemeini, M ; Khorasheh, F ; Darvishi, A ; Rashidi, A. M ; Sharif University of Technology
    2013
    Abstract
    An industrial-scale reactor for ethylene production was modeled using the oxidative dehydrogenation of ethane (ODHE) in a multi-tubular reactor system, examining a variety of parameters affecting reactor performance. The model showed that a double-bed multi-tubular reactor with intermediate air injection scheme was superior to a single-bed design, due to the increased ethylene selectivity while operating under lower oxygen partial pressures. The optimized reactor length for 100% oxygen conversion was theoretically determined for both reactor designs. The use of a distributed oxygen feed with a limited number of injection points indicated a significant improvement on the reactor performance... 

    Controlling electron injection and electron transport of dye-sensitized solar cells aided by incorporating CNTs into a Cr-doped TiO2 photoanode

    , Article Electrochimica Acta ; Volume 111 , 2013 , Pages 921-929 ; 00134686 (ISSN) Massihi, N ; Mohammadi, M. R ; Bakhshayesh, A. M ; Abdi Jalebi, M ; Sharif University of Technology
    2013
    Abstract
    In the present work, we focused on simultaneously control electron injection and electron transport, in dye-sensitized solar cells (DSSCs), aided by introducing Cr3+ and CNTs into a TiO2 photoanode, respectively. X-ray photoelectron spectroscopy (XPS) revealed that, Cr 3+ and CNTs were successfully incorporated into the TiO2 lattice without forming secondary phases. X-ray diffraction (XRD) analysis showed that Cr introduction has perfectly balanced the amount of anatase and rutile phases in order to accomplish a more efficient cell. Field emission scanning electron microscope (FE-SEM) images showed deposited films to have a porous morphology composed of nanoparticles and TiO2 nanoparticles... 

    A comparison between cold-welded and diffusion-bonded Al/Cu bimetallic rods produced by ECAE process

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 10 , 2013 , Pages 3014-3023 ; 10599495 (ISSN) Eslami, P ; Karimi taheri, A ; Zebardast, M ; Sharif University of Technology
    2013
    Abstract
    In this research, the application of equal channel angular extrusion process to produce both the cold-welded and diffusion-bonded Al/Cu bimetallic rods is assessed. The joints shear strength for both of the methods are measured and compared. The microstructure examinations were also carried out using scanning electron microscope equipped with EDX system and x-ray diffraction analysis. The results exhibit that the strength of the bond in cold-welded specimens is dependent on the amount of stretch and pressure at the materials interface. But in the diffusion-bonded specimens, it is depended on the struggle between the oxidation rate of the mating surfaces accompanied by inter-metallic... 

    Improved pseudo-capacitive performance of nano-porous manganese oxide on an electrochemically derived nickel framework

    , Article Analytical Letters ; Volume 46, Issue 15 , October , 2013 , Pages 2372-2387 ; 00032719 (ISSN) Gobal, F ; Jafarzadeh, S ; Sharif University of Technology
    2013
    Abstract
    The pseudocapacitance and morphology of electrodeposited transition metal oxides depend significantly on the morphology of the substrate. The nanoporous nickel substrate, derived from selective electro-dissolution of antimony from an electro-deposited Ni-Sb alloy, effectively promotes the electrochemical utilization of manganese oxide deposited on this structure. The large electronic and ionic conduction within the nanostructured deposit improve the energy storage performance of Mn oxide as compared to that on flat Ni substrate. In this work, the MnO2 specific capacitances of around 612 F g-1 were obtained, which was five times higher than Mn oxide deposited on a flat Ni-ribbon. A highly... 

    A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B

    , Article Analytica Chimica Acta ; Volume 794 , 2013 , Pages 38-46 ; 00032670 (ISSN) Bagheri, H ; Daliri, R ; Roostaie, A ; Sharif University of Technology
    2013
    Abstract
    A novel Fe3O4-poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe3O4/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample... 

    Mn(III) complex supported on Fe3O4 nanoparticles: Magnetically separable nanocatalyst for selective oxidation of thiols to disulfides

    , Article Journal of Coordination Chemistry ; Volume 66, Issue 17 , 2013 , Pages 3025-3036 ; 00958972 (ISSN) Bagherzadeh, M ; Haghdoost, M. M ; Moghaddam, F. M ; Foroushani, B. K ; Saryazdi, S ; Payab, E ; Sharif University of Technology
    2013
    Abstract
    A manganese(III) complex, [Mn(phox)2(CH3OH) 2]ClO4 (phox = 2-(2′-hydroxyphenyl)oxazoline), was immobilized on silica-coated magnetic Fe3O4 nanoparticles through the amino propyl linkage using a grafting process in dichloromethane. The resulting Fe3O4@SiO2-NH2@Mn(III) nanoparticles are used as efficient and recyclable catalysts for selective oxidation of thiols to disulfides using urea-hydrogen peroxide as the oxidant. The nanocatalyst was recycled several times. Leaching and recycling experiments revealed that the nanocatalyst can be recovered, recycled, and reused more than five times, without the loss of catalytic activity and magnetic properties. The recycling of the nanocatalyst in six... 

    Fe doped Ni-Co spinel protective coating on ferritic stainless steel for SOFC interconnect application

    , Article International Journal of Hydrogen Energy ; Volume 38, Issue 27 , 2013 , Pages 12007-12014 ; 03603199 (ISSN) Jalilvand, G ; Faghihi Sani, M. A ; Sharif University of Technology
    2013
    Abstract
    In an attempt to reduce the oxidation and Cr evaporation rates, various protective coating layers with a nominal composition of NiCo 2-xFexO4 (x = 0, 0.5, 1) were deposited on the SUS 430 ferritic stainless steel substrate, as interconnect for solid oxide fuel cell application, by sol-gel dip coating method. Then, the coated samples were soaked at 750 C for 2.5 h in N2 and subsequently for 2.5 h in air. Phase composition and microstructure of the coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Moreover, long-term isothermal oxidation experiment and area specific resistance (ASR) measurement were also carried out on the coated samples. Results... 

    The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions

    , Article Ceramics International ; Volume 39, Issue 7 , 2013 , Pages 7343-7353 ; 02728842 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Dye-sensitized solar cells (DSCCs) in the form of mixed nanostructures containing TiO2 nanoparticles and nanowires with different weight ratios and phase compositions are reported. X-ray diffraction and field emission scanning electron microscopy analyses revealed that the synthesized TiO 2 nanoparticles had average crystallite size in the range 21-39 nm, whereas TiO2 nanowires showed diameter in the range 20-50 nm. The indirect optical band gap energy of TiO2 nanowires, anatase- and rutile-TiO2 nanoparticles was calculated to be 3.35, 3.28 and 3.17 eV, respectively. The power conversion efficiency of the solar cells changed with nanowire to nanoparticle weight ratio, reaching a maximum at a... 

    Electrophoretic deposition of functionally-graded NiO-YSZ composite films

    , Article Journal of the European Ceramic Society ; Volume 33, Issue 10 , 2013 , Pages 1815-1823 ; 09552219 (ISSN) Zarabian, M ; Yar, A. Y ; Vafaeenezhad, S ; Sani, M. A. F ; Simchi, A ; Sharif University of Technology
    2013
    Abstract
    Functionally-graded NiO-8. mol % YSZ composite films were prepared by a controlled voltage-decay electophoretic deposition (EPD) process. The films consisted of three layers with varying NiO concentrations and porosities. Effects of different parameters including the type of the organic media, solid concentration, NiO:YSZ ratio, and iodine on the stability of EPD suspensions and deposition kinetics were studied. A stable NiO-YSZ suspension was attained in isopropanol with NiO-YSZ ratio of 60:40 and iodine concentration of 0.5. mM. The composite film contained varying NiO concentration from 46. wt.% near the substrate to 32. wt.% close to the electrolyte with 42. wt% NiO in the intermediate... 

    A comparison of co-current and counter-current modes for Fischer-Tropsch synthesis in two consecutive reactors of oxidative coupling of methane and Fischer-Tropsch

    , Article Journal of Natural Gas Science and Engineering ; Volume 14 , 2013 , Pages 1-16 ; 18755100 (ISSN) Ghareghashi, A ; Ghader, S ; Hashemipour, H ; Moghadam, H. R ; Sharif University of Technology
    2013
    Abstract
    The results of three cases of two consecutive reactors are studied in two types of co-current and counter-current flow in second reactor where two consecutive reactors are oxidative coupling of methane (OCM) and Fischer-Tropsch (FT) reactors. FT reactor can be fixed bed or membrane fixed bed reactor with a hydrogen perm-selective membrane. Effect of CH4/O2 ratio, contact time, inlet temperature, and amount of N2 in OCM feed on C2 to C5+ hydrocarbons produced in FT reactor were studied. Results show that use of counter-current hydrogen-perm selective membrane FT reactor that sequenced after OCM reactor improves the C5+ yield as a desirable product and reduces the amount of CH4 and CO2 as... 

    Application of response surface methodology and central composite rotatable design for modeling and optimization of sulfuric leaching of rutile containing slag and ilmenite

    , Article Russian Journal of Non-Ferrous Metals ; Volume 54, Issue 5 , 2013 , Pages 388-397 ; 10678212 (ISSN) Abazarpoor, A ; Halali, M ; Maarefvand, M ; Khatibnczhad, H ; Sharif University of Technology
    2013
    Abstract
    In this study, application of the Response Surface Methodology and the Central Composite Design (CCD) technique for modeling and optimization of the influence of several operating variables on titanium recovery in a leaching process were investigated. The four main leaching parameters, namely temperature, acid concentration, leaching time and solid to liquid ratio, were changed during-the leaching experiments based on the CCD. A total of 30 leaching experiments were designed and carried out in the CCD method according to software-based designed matrix. According to the results, i.e., titanium recoveries with these four parameters as well as empirical model equations were developed. The model... 

    The effect of melt quality and filtering on the Weibull distributions of tensile properties in Al-7%Si-Mg alloy castings

    , Article Materials Science and Engineering A ; Volume 579 , 2013 , Pages 64-70 ; 09215093 (ISSN) Eisaabadi B., G ; Davami, P ; Kim, S. K ; Tiryakioglu, M ; Sharif University of Technology
    2013
    Abstract
    The effects of melt quality and the placement of a filter in the filling system on Weibull distributions of tensile strength and elongation of Al-7%Si-Mg alloy castings were investigated. Three different combinations of melt quality and filtering were used: (a) unstirred, with filter in the filling system, (b) stirred to produce and entrain surface oxide films with no filter in the filling system to emulate poor initial melt preparation and melt handling, and (c) stirred and with a filter placed in the filling system. The results showed that the highest elongation and tensile strength values were obtained from the unstirred, filtered condition and lowest values were from stirred and... 

    Multi objective optimization of solid oxide fuel cell stacks considering parameter effects: Fuel utilization and hydrogen cost

    , Article Journal of Renewable and Sustainable Energy ; Volume 5, Issue 5 , 2013 ; 19417012 (ISSN) Behzadi Forough, A ; Roshandel, R ; Sharif University of Technology
    2013
    Abstract
    In the context of stationary power generation, fuel cell based systems are being predicted as a valuable option to tabernacle the thermodynamic cycle based power plants. In this paper, multi objective optimization approach is used to optimize the planer solid oxide fuel cell (SOFC) stacks performance using genetic algorithm technique. Multi objective optimization generates the most attractive operating conditions of a SOFC system. This allows performing the optimization of the system regarding to two different objectives. Two pairs of different objectives are considered in this paper as distinguished strategies. In the first strategy, minimization of the breakeven per-unit energy cost... 

    Numerical study of CO and CO2 formation in CH4/H2 blended flame under MILD condition

    , Article Combustion and Flame ; Volume 160, Issue 9 , September , 2013 , Pages 1636-1649 ; 00102180 (ISSN) Mardani, A ; Tabejamaat, S ; Hassanpour, S ; Sharif University of Technology
    2013
    Abstract
    Reduction of air pollutants formation from hydrocarbon combustion process requires improvements in combustion systems. The moderate and intense low oxygen dilution (MILD) combustion technique is an opportunity to achieve such a goal. MILD combustion is a combustion regime which can be attained by high temperature preheating and high level dilution. In this paper, the mechanism of CO and CO2 formation for a CH4/H2 fuel mixture is studied under MILD combustion condition of a jet in hot coflow (JHC) burner. This investigation is done using the computational fluid dynamics (CFD) and also zero dimensional well-stirred reactor (WSR) analysis. The RANS equations with modified k-ε equations are... 

    Numerical and experimental investigation of the grain refinement of liquid metals through cavitation processing

    , Article Metals and Materials International ; Volume 19, Issue 5 , September , 2013 , Pages 959-967 ; 15989623 (ISSN) Haghayeghi, R ; Ezzatneshan, E ; Bahai, H ; Nastac, L ; Sharif University of Technology
    2013
    Abstract
    An investigation was carried out on the grain refinement of molten AA5754 Aluminum alloy through intensive shearing. The results show intensive shearing via cavitation decreases the grain size significantly. The above hypothesis for structure refinement was evaluated and an experiment was performed to ensure the creditability of this assumption. Finally, it was simulated by computational fluid dynamics (CFD) modeling. It was understood that shearing is the responsible mechanism for creation of cavitation bubbles and further collapse of them. It was also concluded the pressure which generated from the collapse of the bubble is well enough for braking the oxide layer and wetting them. It was...