Loading...
Search for: pipe
0.005 seconds
Total 287 records

    Analysis of laminar flow in the entrance region of parallel plate microchannels for slip flow

    , Article Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009, 22 June 2009 through 24 June 2009, Pohang ; Issue PART A , 2009 , Pages 345-352 ; 9780791843499 (ISBN) Sadeghi, A ; Asgarshamsi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Microscale fluid dynamics has received intensive interest due to the emergence of microelectromechanical systems (MEMS) technology. Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this work, the steady state laminar rarefied gas flow in the entrance region of parallel plate microchannels is investigated by the integral method with slip flow conditions at solid surface. The effects of Knudsen number on friction factor and Nusselt number are presented in graphical form as well as analytical form. Also the effect of Knudsen number on hydrodynamic entry length is presented. The results show that as Knudsen number increases the... 

    CFD-DEM simulation of the hole cleaning process in a deviated well drilling: the effects of particle shape

    , Article Particuology ; Volume 25 , 2016 , Pages 72-82 ; 16742001 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Abstract
    We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). This numerical method allows us to incorporate the fluid-particle interactions (drag force, contact force, Saffman lift force, Magnus lift force, buoyancy force) using momentum exchange and the non-Newtonian behavior of the fluid. The interactions of particle-particle, particle-wall, and particle-drill pipe are taken into account with the Hertz-Mindlin model. We compare the transport of spheres with non-spherical particles (non-smooth sphere, disc, and cubic) constructed via the... 

    Mass flow rate scaling of the continuum-based equations using information preservation method

    , Article 41st AIAA Thermophysics Conference2009, Article number 2009-3746 ; 2009 ; 9781563479755 (ISBN) Roohi, E ; Darbandi, M ; Vakilipour, S ; Schneider, G. E ; Sharif University of Technology
    Abstract
    Kinetic theory based numerical scheme such as direct simulation Monte Carlo (DSMC) and information preservation (IP) schemes properly solve micro-nano flow problems in transition and free molecular regimes. However, the high computational cost of these methods encourages the researchers toward extending the applicability of the continuumbased equations beyond the slip flow regime. In addition to correct velocity profile, the continuum-based equations should predict accurate mass flow rate magnitude. The secondorder velocity slip models derived from the kinetic theory provide accurate velocity profiles up to Kn=0.5; however, they yield erroneous mass flow rate magnitudes because the basic... 

    Modeling and simulation of barite deposition in an annulus space of a well using CFD

    , Article Journal of Petroleum Science and Engineering ; Volume 161 , 2018 , Pages 476-496 ; 09204105 (ISSN) Movahedi, H ; Shad, S ; Beagom Mokhtari Hosseini, Z ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In drilling industry, barite particles settling and barite sag as a major problem can potentially impose significant operational issues. Static conditions, in which well undergoes an extended shut-in period, could occur during different drilling and completion operations such fishing operation, tripping, and logging. Despite its importance, such phenomenon is not well understood yet. To avoid issues related to barite settlement and barite sag, a good understanding of the impact of different drilling parameters on barite settlement and sag phenomenon is required. Recently, the mathematical formulation and modeling of settlement and sag processes have gained more attention. In order to better... 

    New dynamics model for rail vehicles and optimizing air suspension parameters using GA

    , Article Scientia Iranica ; Volume 16, Issue 6 B , 2009 , Pages 496-512 ; 10263098 (ISSN) Sayyaadi, H ; Shokouhi, N ; Sharif University of Technology
    2009
    Abstract
    In this paper, a complete four axle rail vehicle model with 70 Degrees Of Freedom (DOFs) is addressed, which includes; a carbody, two bogies and four axles. In order to include track irregularity effects on vehicle behavior, a simplified track model for a straight line is proposed. As the performance of the suspension components, especially for air springs, has significant effects on rail-vehicle dynamics and the ride comfort of passengers, a complete nonlinear thermo-dynamical air spring model which is a combination of two different models is introduced and then implemented in the complete rail-vehicle dynamics. By implementing the Presthus formulation [1], the thermo-dynamical parameters... 

    Extending the Navier-stokes solutions to transition regime in two-dimensional micro- and nanochannel flows using information preservation scheme

    , Article Physics of Fluids ; Volume 21, Issue 8 , 2009 ; 10706631 (ISSN) Roohi, E ; Darbandi, M ; Sharif University of Technology
    2009
    Abstract
    The kinetic-theory-based numerical schemes, such as direct simulation Monte Carlo (DSMC) and information preservation (IP), can be readily used to solve transition flow regimes. However, their high computational cost still promotes the researchers to extend the Navier-Stokes (NS) equations beyond the slip flow and to the transition regime applications. Evidently, a suitable extension would accurately predict both the local velocity profiles and the mass flow rate magnitude as well as the streamwise pressure distribution. The second-order slip velocity model derived from kinetic theory can provide relatively accurate velocity profiles up to a Knudsen (Kn) number of around 0.5; however, its... 

    Investigation of valve-closing law on the maximum head rise of a hydropower plant

    , Article Scientia Iranica ; Volume 16, Issue 3 B , 2009 , Pages 222-228 ; 10263098 (ISSN) Vakil, A ; Firoozabadi, B ; Sharif University of Technology
    2009
    Abstract
    Piping systems commonly experience the transient-state situation as the result of changes to flow conditions during pump failures, valve closures or turbine load rejection. This paper addresses transients as a consequence of the load rejection of a Francis hydropower plant (Karun 4, Ahwaz, Iran). To control the turbine system and related equipment during load rejection, the valve closing law of wicket gates is of paramount importance. The pressure rise at the end of the pressure shaft, the pressure drop in the draft tube and the speed rise while the electromagnetic braking torque disappears are solely dependent on the closing curve. Thus, an optimum closing law can eliminate the probable...