Loading...
Search for: pipe
0.009 seconds
Total 287 records

    Parametric study of buried steel and high density polyethylene gas pipelines due to oblique-reverse faulting

    , Article Canadian Journal of Civil Engineering ; Volume 42, Issue 3 , 2015 , Pages 178-189 ; 03151468 (ISSN) Rahimzadeh Rofooei, F ; Hojat Jalali, H ; Khajeh Ahmad Attari, N ; Kenarangi, H ; Samadian, M ; Sharif University of Technology
    National Research Council of Canada  2015
    Abstract
    A numerical study is carried out on buried steel and high density polyethylene (HDPE) pipelines subjected to oblique-reverse faulting. The components of the oblique-reverse offset along the horizontal and normal directions in the fault plane are determined using well-known empirical equations. The numerical model is validated using the experimental results and detailed finite element model of a 114.3 mm (4==) steel gas pipe subjected to a reverse fault offset up to 0.6 m along the faulting direction. Different parameters such as the pipe material, the burial depth to the pipe diameter ratio (H/D), the pipe diameter to wall thickness ratio (D/t), and the fault–pipe crossing angle are... 

    Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section

    , Article International Journal of Heat and Mass Transfer ; Volume 126 , 2018 , Pages 431-441 ; 00179310 (ISSN) Sedighi, E ; Amarloo, A ; Shafii, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In addition to some approaches such as changing the working fluid or number of turns in a flat-plate pulsating heat pipe (FP-PHP), geometrical changes are also appealing for enhancing the thermal performance of this type of heat pipes. The main idea of this investigation is to increase heat transfer rate by increasing flow circulation of working fluid. By placing additional branches in the evaporator section, secondary bubble pumps were created which improved the circulation of fluid inside the FP-PHP. In order to investigate the impact of these additional branches, two similar four-turn aluminum FP-PHPs were fabricated. One of them was the conventional FP-PHP and the other had four... 

    A review on pulsating heat pipes: from solar to cryogenic applications

    , Article Applied Energy ; Volume 222 , 15 July , 2018 , Pages 475-484 ; 03062619 (ISSN) Alhuyi Nazari, M ; Ahmadi, M. H ; Ghasempour, R ; Behshad Shafii, M ; Mahian, O ; Kalogirou, S ; Wongwises, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Pulsating heat pipes (PHPs) are compact cooling equipment used for various applications. This type of heat pipes can be used in renewable energy systems, cooling electronic devices, heat recovery systems and many other applications. Since PHPs have superior thermal performance, by applying them in energy systems enhance their efficiency. In addition, PHPs are a reliable medium for cooling various devices which have high heat flux. In this study, various works conducted on the applications of PHPs are reviewed and analyzed. It is concluded that PHPs are efficient and reliable devices for utilization in various energy systems. Moreover, at very low temperatures, such as cryogenic applications,... 

    Design and performance of a novel hybrid photovoltaic–thermal collector with pulsating heat pipe (PVTPHP)

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 43 , 2019 , Pages 371-381 ; 22286187 (ISSN) Kavoosi Balotaki, H ; Saidi, M. H ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    Hybrid photovoltaic–thermal collectors (PVT) are cogeneration components that convert solar energy into both electricity and heat. Pulsating heat pipe (PHP) is a fast-responding, flexible and high-performance thermal-conducting device. The aim of this work is design and performance of a novel hybrid photovoltaic–thermal collector with pulsating heat pipe (PVTPHP) for improving the electrical efficiency, by reducing the photovoltaic panel’s temperature, as well as taking advantage of the thermal energy produced. An experimental setup of PVTPHP is constructed, and its operating parameters are measured. The measured parameters include solar radiation intensity, ambient temperature, filling... 

    Experimental and simulation investigation of pulsed heat pipes in gas compressors

    , Article AIMS Energy ; Volume 8, Issue 3 , 2020 , Pages 438-454 Alizadeh, A ; Shafii, M. B ; Mirzahosseini, A. H ; Ataei, A ; Sharif University of Technology
    AIMS Press  2020
    Abstract
    In natural gas pressure boosting stations, air coolers are used to reduce the gas temperature. Pressure drop as an essential factor in determining the energy performance of any pressure boosting station has a significant impact on the overall performance of the gas transmission. In this paper, a laboratory pilot is designed to investigate the effect of pressure drop reduction on the use of heating pipes at the air coolers. In addition, as a case for a gas pressure boosting station, its impact over energy performance index and pressure drop parameter has been calculated through simulating. The results show, implemented PHP tubes in an air cooler, lead to reduce tube length and improve... 

    Numerical analysis of photovoltaic solar panel cooling by a flat plate closed-loop pulsating heat pipe

    , Article Solar Energy ; Volume 206 , 2020 , Pages 455-463 Alizadeh, H ; Alhuyi Nazari, M ; Ghasempour, R ; Shafii, M. B ; Akbarzadeh, A. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Photovoltaic (PV) panels provide a suitable way for the direct conversion of solar energy into electricity. The electrical output and efficiency of PV modules are dependent on working temperature. The present study contributes to investigate the efficiency of utilizing a flat plate closed-loop pulsating heat pipe (CLPHP) to cool down a PV panel in both thermal and economic aspects. Accordingly, a numerical investigation is employed to obtain the surface temperature and electrical gain of the PV panel through four scenarios, including natural cooling without additional equipment, CLPHP-based passive cooling, CLPHP-based active cooling, and a conventional flat plate cooling methods. The... 

    In-service corrosion evaluation in pipelines using gamma radiography - A numerical approach

    , Article Insight: Non-Destructive Testing and Condition Monitoring ; Volume 46, Issue 7 , 2004 , Pages 396-398 ; 13542575 (ISSN) Edalati, K ; Rastkhah, N ; Kermani, A ; Seidi, M ; Movafeghi, A ; Sharif University of Technology
    2004
    Abstract
    Wall thickness measurement and deterioration determination of 6 and 10 inch pipes due to corrosion/erosion/pitting was evaluated by using radiographic film density measurements. Special reference blocks were prepared with defined step wall reductions and artificial defects. Gamma radiography with a Ir-192 source was used. A double-wall technique with longitudinal film arrangement was used for this purpose. Formulae were developed from the experiments for numerical calculations. It was observed that this method can determine remaining wall thickness as well as pitting corrosion in insulated and non-insulated pipes with differential and absolute density measurements. The purpose of the work... 

    Boundary layer solution for the turbulent swirling decay flow through a fixed pipe: sbr at the inlet

    , Article 2003 ASME International Mechanical Engineering Congress, Washington, DC., 15 November 2003 through 21 November 2003 ; Volume 259 , 2003 , Pages 449-456 ; 08888116 (ISSN) Najafi, A. F ; Sadeghipour, M. S ; Saidi, M. H ; Souhar, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2003
    Abstract
    In this study the developing turbulent swirling pipe flow is investigated both numerically and analytically. Governing equations are derived accompanying the boundary layer assumptions. Uniform and solid body rotation (SBR) distributions are taken into account for the axial and tangential velocities at the inlet of the pipe, respectively. Beyond the boundary layers, the flow pattern is considered to be the potential flow. Making use of the fourth-order Runge-Kutta scheme, the numerical solution of the differential equations is obtained. Further more, by simplifying the governing equations for large Rossby number, the analytical solution is performed. The results of numerical and analytical... 

    An investigation on dynamic behavior of rotating shafts using a pipe elbow finite element formulation

    , Article Engineering Solid Mechanics ; Volume 10, Issue 2 , 2022 , Pages 179-190 ; 22918744 (ISSN) Sajjadpour, M ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    Growing Science  2022
    Abstract
    Rotating shafts have a vast application in various industries especially in the aerospace industry such as engines, compressors and turbines. The researchers have performed considerable efforts on the rotating shafts’ dynamic behavior because of their sensitivity to the rotor specifications and different parameters such as supports. In this paper by employing a pipe elbow element, an especial finite element formulation is derived to investigate dynamic behavior of rotating shaft in the presence of support clearance. The proposed element consists of four nodes with twenty-four degrees of freedom, which also accounts for the shear and gyroscopic effects. Within a finite element analysis... 

    Experimental Investigation of Pulsating Heat Pipe Using Nano-Fluid

    , M.Sc. Thesis Sharif University of Technology Taslimifar, Mehdi (Author) ; Saidi, Mohammad Hassan (Supervisor) ; Afshin, Hossain (Supervisor) ; Shafiee, Mohammad Behshad (Supervisor)
    Abstract
    Considerable increase in speed and decrease in size of electronic devices results in increase of heat flux, so there is a need to enhance efficiency of cooling electronic devices. In the present research two sets of OLPHPs with five turns for two different magnetic nano-fluids were fabricated and the effects of working fluid (water, and two types of magnetic nano-fluids), working pressure, concentration, magnetic field, magnets location, and inclination angle on the thermal performance of OLPHPs have been considered in both startup and steady thermal conditions.
    Experimental results show that magnetic nano-fluids can improve thermal performance of the OLPHPs. Application of magnetic... 

    Experimental Investigation ofClosed-loop Pulsating Heat-pipe with an Additional Branch in the Evaporator Section

    , M.Sc. Thesis Sharif University of Technology Sedighi, Erfan (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    The main idea of this investigation is to increase heat transfer rate by increasing flow circulation of working fluid. By placing additional branches in the evaporator section, secondary bubble pumps were created which improved the circulation of fluid inside PHP. This research was implemented in two distinct phases. In the first phase, the novelty was implemented on a single turn PHP and in the second phase, the same procedure was implemented on a 4-turn PHP. In order to investigate the impact of these additional branches, two similar heat pipes were fabricated. One of them was the conventional PHP and the other had additional branches and is named additional branch PHP (AB-PHP). Thermal... 

    Optimization of Construction Workshop Activities in A Piping Process

    , M.Sc. Thesis Sharif University of Technology Safarzadeh, Soroush (Author) ; Shadrokh, Shahram (Supervisor)
    Abstract
    Piping process is the most important part of industries projects which pay attention to construction and installation of industrial pipelines and its facilities. In the meantime, due to increasing demand of industrial units to construction and development projects, planing and scheduling the piping is necessary. We review and discuss various aspects of the piping process, optimization process and the related scheduling literature that is called Flexible Job Shop Scheduling Problem. Then, to solve the problem, considering the real world assumptions, a mathematical model, is developed and a heuristic algorithm is introduced. Also, in order to determine an appropriate bound for the optimal... 

    Performance Improvement of the Flat Plate Pulsating Heat Pipe with Diagonal Grooves

    , M.Sc. Thesis Sharif University of Technology Zareian, Alireza (Author) ; Shafiee, Mohammad Behshad (Supervisor) ; Moosavi, Ali (Co-Supervisor)
    Abstract
    The main purpose of this study was to increase the flow circulation within the flat plate oscillating heat pipes as a result Increase the heat transfer rate by placing diagonal grooves in the evaporator. The project in two stages a simple page and diagonal companion page are provided to investigate the effect of diagonal grooves. First a simple plate and then a second one with diagonal grooves in the evaporator it was made. Thermal performance of the heat pipes at each of the stages at different filling ratios of 40%, 50%, 60% and 70% for variable input capacities have been studied and compared. The results of the second stage showed that the performance of the new heat pipe at the optimum... 

    Investigating and Designing Different Parameters of Composite Patch for Damaged Pipe

    , M.Sc. Thesis Sharif University of Technology Ziyarati Yazdeli, Mohammad Hossein (Author) ; Abedian, Ali (Supervisor)
    Abstract
    This paper presents, various parameters of the composite patch for repairing and reinforcement the damaged composite pipe have been investigated. There are various parameters of the composite patch such as Laminate orientation, length, width, material and thickness of the patch. by changing these parameters in each analysis and comparing the results, the optimal patch for the damaged pipe is determined  

    Modified Buongiorno's model for fully developed mixed convection flow of nanofluids in a vertical annular pipe

    , Article Computers and Fluids ; Vol. 89 , 2014 , pp. 124-132 ; ISSN: 00457930 Malvandi, A ; Moshizi, S. A ; Soltani, E. G ; Ganji, D. D ; Sharif University of Technology
    Abstract
    This paper deals with the mixed convective heat transfer of nanofluids through a concentric vertical annulus. Because of the non-adherence of the fluid-solid interface in the presence of nanoparticle migrations, known as slip condition, the Navier's slip boundary condition was considered at the pipe walls. The employed model for nanofluid includes the modified two-component four-equation non-homogeneous equilibrium model that fully accounts for the effects of nanoparticles volume fraction distribution. Assuming the fully developed flow and heat transfer, the basic partial differential equations including continuity, momentum, and energy equations have been reduced to two-point ordinary... 

    Numerical solution of homogeneous double pipe heat exchanger: Dynamic modeling

    , Article Scientia Iranica ; Volume 21, Issue 2 , 2014 , pp. 449-455 ; ISSN: 10263098 AliHosseinpour, H ; Kazemi, Y ; Fattahi, M ; Sharif University of Technology
    Abstract
    Dynamic modeling of a double-pipe heat exchanger is the subject of the current study. The basis of this study is the same velocity of vapor and liquid phases or, in other words, homogeneous phase, in the annulus part of the exchanger. The model can predict the temperature and vapor quality along the axial pipe from the pipe inlet up to a distance where steady state conditions are achieved. The simulation is conducted for two modes of co- and counter-flow in a one dimensional transient system. The physical properties of water are estimated from empirical correlation and a saturated vapor table with cubic spline interpolation. The exchanger model, which is a set of Ordinary Differential... 

    Bending-torsional flutter of a cantilevered pipe conveying fluid with an inclined terminal nozzle

    , Article Journal of Sound and Vibration ; Volume 332, Issue 12 , 2013 , Pages 3002-3014 ; 0022460X (ISSN) Firouz Abadi, R. D ; Askarian, A. R ; Kheiri, M ; Sharif University of Technology
    2013
    Abstract
    Stability analysis of a horizontal cantilevered pipe conveying fluid with an inclined terminal nozzle is considered in this paper. The pipe is modelled as a cantilevered Euler-Bernoulli beam, and the flow-induced inertia, Coriolis and centrifugal forces along the pipe as well as the follower force induced by the jet-flow are taken into account. The governing equations of the coupled bending-torsional vibrations of the pipe are obtained using extended Hamilton's principle and are then discretized via the Galerkin method. The resulting eigenvalue problem is then solved, and several cases are examined to determine the effect of nozzle inclination angle, nozzle aspect ratio, mass ratio and... 

    Overall thermal performance of ferrofluidic open loop pulsating heat pipes: An experimental approach

    , Article International Journal of Thermal Sciences ; Volume 65 , 2013 , Pages 234-241 ; 12900729 (ISSN) Taslimifar, M ; Mohammadi, M ; Afshin, H ; Saidi, M. H ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    Pulsating heat pipes (PHPs) are simple, cheap, and efficient heat transfer devices. They have applications in electronic cooling. In the present research, an experimental investigation is conducted on startup and steady thermal performances of open loop pulsating heat pipes (OLPHPs). Effects of working fluid, heat input, non-condensable gases (NCGs), ferrofluid concentration, magnets location, and inclination angle on the thermal performance of OLPHPs have been considered. Obtained results show that using ferrofluid can improve the thermal performance in steady state condition. Furthermore, applying a magnetic field enhances the heat transfer characteristics of ferrofluidic OLPHPs in both... 

    A novel integrated solar desalination system with a pulsating heat pipe

    , Article Desalination ; Volume 311 , 2013 , Pages 206-210 ; 00119164 (ISSN) Kargar Sharif Abad, H ; Ghiasi, M ; Jahangiri Mamouri, S ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    The application of the solar energy in thermal desalination devices is one of the most beneficial applications of the renewable energies. In this study, a novel solar desalination system is introduced, which is benefited from the undeniable advantages of pulsating heat pipe (PHP) as a fast responding, flexible and high performance thermal conducting device. Results show a remarkable increase in the rate of desalinated water production and the maximum production reaches up to 875mL/(m2.h). However, the optimum water depth in basin and the filling ratio of the PHP are measured 1cm and 40%, respectively  

    Effect of step geometry on the performance of the airlift pump

    , Article International Journal of Fluid Mechanics Research ; Volume 38, Issue 5 , 2011 , Pages 387-408 ; 10642277 (ISSN) Hanafizadeh, P ; Karimi, A ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Airlift pumps are devices which are widely used in industrial applications. Parameters such as diameter of the pipe, tapering angle of the upriser pipe, submergence ratio, the gas flow rate, bubble diameter, and inlet gas pressure affect the performance of this type of pumps. In this research, the performances of airlift pumps with a vertical upriser length of 914 mm and initial diameters of 6 and 8 mm and various heights for steps, range 0:2 to 0:9 m, in submergence ratio of 0:6 are investigated numerically. The results show the improvement in the performance of step airlift pump (SALP) in comparison with ordinary type (OALP). Considering the effect of height of steps and secondary pipe...