Loading...
Search for: porosity
0.013 seconds
Total 312 records

    Electrophoretic Deposition of TiO2 Nanoparticles and Fiber for DSC Application

    , M.Sc. Thesis Sharif University of Technology Shooshtari, Leyla (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    Dye Sensitized Solar cell (DSC) is the third class of solar cell, which consists of a nanocrystalline, mesoporous of semiconductor(The best one is Tio2), covered with a monolayer of dye molecules, platinum coated on FTO as a counter electrode and a redox electrolyte. This Photovoltaic cell which is promising low-cost materials, works on electron separation of dye molecule, and electron injection to semiconductor’s conduction photo- electrode structure and its porosity is affected the DSC’s performance. Recently, use of electrophoretic deposition (EPD) for TiO2 electrode (which best found for photo-electrode in DSC) fabrication has gained increased interests. In this method charged particles... 

    Numerical Modeling and Simulation of Freeze Desalination of Seawater

    , M.Sc. Thesis Sharif University of Technology Salakhi, Mehdi (Author) ; Afshin, Hossein (Supervisor)
    Abstract
    Access to potable water with standard quality is an inevitable component of human’s lives. Freeze desalination, by consuming lower energy compared to other techniques, relies on the exertion of a cold source which is then accompanied by simultaneous rejection of impurities from water. Regarding this, a numerical study on freeze desalination a hollow cylinder is carried out to determine the effects of the design variables such as heat flux, hydraulic diameter, initial salt concentration, and freezing time on the ice mass, ice salinity, ice generation speed, and Nusselt number on a cold surface of the inner tube. Results show that increasing the value of heat flux from -250 W/m^2 to -1000... 

    Experimental Investigation of Brine Salinity Effect on Relative Permeability Curve in Tight Reservoir

    , M.Sc. Thesis Sharif University of Technology Zeinolabedin, Roham (Author) ; Shad, Saeed (Supervisor)
    Abstract
    An experimental study was conducted to investigate the reduction of relative permeability caused by salt precipitation. Series of isothermal sand pack flood experiments were conducted on a sand pack composed of several minerals and relative permeability of the involved phases were determined. This compose was taken south of Iranian reservoir properties. A stainless steel sand-pack of 2.5cm internal diameter and 19.2 cm long was designed and built for experimental procedure. There are is different methods to determine relative permeability of porous media, According to available facilities in the lab and objective of this study unsteady state have been chosen to determine relative... 

    Investigating the Role of Molecular Diffusion on the Performance of Non-Equilibrium Gas Injection in One of the Fractured Reservoirs in Iran

    , M.Sc. Thesis Sharif University of Technology Rigi, Ahmad (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Fatemi, Mobin (Supervisor)
    Abstract
    Major parts of Iran's oil reservoirs are fractured carbonates, which need time to produce oil due to their much lower permeability than sandstone reservoirs. Molecular diffusion mechanism is an efficient mechanism in oil recovery from fractured reservoirs under gas injection conditions. The main subject of this work is to investigate the role of molecular diffusion mechanism in the non-equilibrium gas injection project and its role in increasing the oil recovery rate in two southern fractured reservoirs located in the west of Iran, taking into account the capillary pressure, as well as the change of interfacial tension closely miscible conditions is also investigated through simulation. The... 

    Assisted History-Matching for Fractured Reservoir Characterization

    , M.Sc. Thesis Sharif University of Technology Rezaei Kalat, Alireza (Author) ; Ayatollahi, Shahab (Supervisor) ; Masihi, Mohsen (Supervisor)
    Abstract
    Fracture reservoirs are highly heterogeneous. This heterogeneity makes the process of adjusting model parameters to match both the static geological and dynamic production data challenging. For this reason, the characterization of the fracture network of these reservoirs, which is achieved by finding the appropriate probability distributions of the fracture properties in the discrete fracture network model, requires the use of an integrated workflow for the process of history-matching.This thesis, presents an integrated workflow for the process of history-matching of naturally fractured reservoirs with field-scale performance capability. In this methodology, first, multiple discrete fracture... 

    Effect of Process Parameters in Selective Laser Melting on Quality (Porosity) of the Component

    , M.Sc. Thesis Sharif University of Technology Deldar Masrour, Pouria (Author) ; Farrahi, Gholamhossein (Supervisor) ; Tangestani, Reza (Co-Supervisor)
    Abstract
    In the present research, a new material model utilizing anisotropic conduction and track-scale heat input model is used to predict the melt pool geometry, material state and thermal history during the selective laser melting process of SS316L in a large range of laser parameters. The model takes into account the phase transition of the material during the process. Furthermore, the phase transition problem in the track-scale model has been analyzed and a solution has been presented. The simulated melt pools in beam-scale and track-scale simulations are compared with experimental measurements in different laser parameters. It is found that the proposed material model is able to maintain... 

    Formation of ZrC-WC-W Composites Ceramics by DCP Method and Investigation of Their Physical Properties, Phase Composition and Microstructure

    , M.Sc. Thesis Sharif University of Technology Davarpanah, Amin (Author) ; Faghihi Sani, Mohammad Ali (Supervisor) ; Mirhabibi, Ali Reza (Supervisor)
    Abstract
    Refractory metals (W,Re,Ta,Mo,Nb) and their alloys can exhibit exceptional properties at elevated temperatures. However, refectory metals tend to be relatively heavy and, in some cases, can be relatively difficult to form in complex shapes at low cost. Light composites of refractory metals with high-melting ceramics, which can be fabricated into dense, near net shapes at low temperatures, would be particularly attractive for advanced aerospace applications. In this project, WC powders have been pressed and shaped to cylindrical preforms. Secondly, these performs have been sintered slightly(presintered) into porous, rigid ones with about 50% open porosity. Finally, in order to reach dense... 

    The Effect of Different Stresses in the Three Principal Directions on a Formation with 30 Degree Fractured

    , M.Sc. Thesis Sharif University of Technology Khalighi, Jafar (Author) ; Goodarznia, Iraj (Supervisor)
    Abstract
    In this study we investigated the stress effects on the fractured block in formation and its impact on flow through the matrix. At first the effect of various stresses on reduction of sample's pore volume and thereby reduction the permeability have been studied. The equations used to describe the elasticity relations in saturated matrix block is provided by Bayot theory. In this theory, the system of related equations to stress and strain changes have been developed in matrix. We have used finite element method in COMSOL software to solve the equation system created by elasticity relations in formation. After solving the equations, volume and volumetric strain changes which are caused by the... 

    Synthesis of Super-porous Nano Structure Nitinol by Milling using Space Holder Technics and Measure of Termomechanical Properties

    , M.Sc. Thesis Sharif University of Technology Khalatbari, Mohammad Saleh (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    NiTi is known as a most important material for manufacturing implants and other medical devises duo to its shape memory and super elasticity properties, high energy damping and high corrosion resistance.In this project the possibility of producing nano structured NiTi implant with high porosity was investigated. For reaching to nano scale mechanical alloying process was done on Ti and Ni powder as row materials. Mechanical alloying process and the possibility of reaching nano structure or amorphous phase was investigated. Space holder technic was used for reaching a porous structure. Sintering process was planned in a way to inhibit grain growth as much as possible. The samples sintered in... 

    Numerical Study of the Effect of Permeability in Single-Phase Flow in Porous Media

    , M.Sc. Thesis Sharif University of Technology Heidari Farsani, Mohammad (Author) ; Sadrhosseini, Hani (Supervisor) ; Ashjari, Mohammad Ali (Supervisor)
    Abstract
    Present study is to simulate laminar flow in a channel exposed to heat flux from the walls and filled with porous media by software ANSYS CFX in finite volume method. The analysis is based on the Naviere-Stokes equations in the flow field which are modified to Brinkman-Forchheimer equations to be applicable for porous media. Effect of Reynolds number and permeability on seepage velocity, temperature distribution, heat transfer and pressure drop are investigated.Simulations are performed for two cases: fully developed flow at the entrance of the porous media and developing flow, which are corresponding to the Reynolds numbers of Re=77.6 and Re=1553 respectively (U= 0.01 m/s and U= 0.2 m/s).... 

    Effect of Grain Refining, Cooling Rate and Modification on Shrinkage Porosities in A356 Aluminum Alloy

    , M.Sc. Thesis Sharif University of Technology Hajizadeh Bidgoli, Ali (Author) ; Varahram, Naser (Supervisor)
    Abstract
    In this study, the influence of eutectic modification, grain refining and cooling rate on amount of shrinkage porosity in aluminium A356 alloy were investigated. Modification process for changing the morphology of eutectic silicon from needle like to fibrous like, use in aluminium – silicon alloys. This process often leads to increasing porosity in melt and affect harmfully on mechanical properties. For studying shrinkage porosity, the melt degassed completely to minimizing amount of gas in the melt. For modification, strontium in Al-10Sr master alloy and sodium in NaF salt used and for grain refining Al-10Ti and Al-5Ti-1B master alloys used. To study the effect of cooling rate, three mold... 

    Hydraulic Crack Propagation in Heterogeneous Reservoir Based on Extended Multi-Scale Finite Element Method

    , Ph.D. Dissertation Sharif University of Technology Hajiabadi, Mohammad Reza (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Many natural and engineering materials have a heterogeneous structure at a certain level of observation. These materials are often referred to as composite materials or multi-phase materials or heterogeneous materials. It has been widely recognized that many macroscopic phenomena originate from the mechanics of the microstructural constituents, such as inclusions, cracks, voids, etc. The size, shape, spatial distribution, volume fraction and properties of the microstructural constituents have a significant impact on the behavior of the material observed at the macroscale. The nature of hydrocarbon reservoirs as multi-phase porous media are known for heterogeneous media at various multiple... 

    Optimization of Porosity Distribution in Functionally Graded Porous Shape Memory Alloy Beams Using Genethic Algorithm

    , M.Sc. Thesis Sharif University of Technology Jamshidi, Mohammad Amin (Author) ; Arghavani Hadi, Jamal (Supervisor)
    Abstract
    Shape Memory alloys are a kind of intelligent materials developed in recent years due to their comprehensive use in medical, robotics, and other advanced sciences. Two main characteristics of them are shape memory effect and superelasticity put these materials in the category of advanced materials. Recently, the new branch of them attracted many studies which is the porous shape memory alloys. The importance of this class of material is related to their properties such as bio-compatibility, superelasticity and shape memory effect. Since shape memory alloys are usually expensive, a new field is developed known as functionally graded porosity distribution. This method is performed by... 

    Presentation of a Model and Solving the Problem of Project Portfolio Selection Based on Project Scheduling using Two-Level NSGAII

    , M.Sc. Thesis Sharif University of Technology Jafari, Hossein (Author) ; Shadrokh, Shahram (Supervisor)
    Abstract
    This project aims to study a situation in which several projects must be selected. The decision makers should select a subset of these projects taking into account the limitation of resources and scheduling. Project selection models generally do not consider schedule of project activities as part of selection process. On the other hand, except the cases where only one project is under process in each period, prioritizing the selected projects is not optimal not considering their scheduling. Projects scheduling in project activities level may increase the complexity of decision making for portfolio selection and expand the area of search for selection of projects portfolio. Therefore, all the... 

    Simulation of High Frequency Acoustic Waves in Porous Media

    , M.Sc. Thesis Sharif University of Technology Taghikhani, Saeed (Author) ; Farshchi, Moammad (Supervisor)
    Abstract
    In this study, a numerical investigation of propagation of sound through a fluid-saturated porous column has been proposed so that we can analyze the effects of porous media parameters on decreasing sound amplitude. The mathematical model applied for our simulation is based on Biot equations solved by an explicit finite difference method. Since Biot model is exclusively applicable to porous solids saturated with single fluid phase, in order to simulate a porous solid saturated with two immiscible fluids, we exploited the general Eulerian model instead of Biot model. Efficiency of porous sound absorbers is directly influenced by four major parameters which are porosity, rigidity and thickness... 

    Dual Porosity Modeling of Oil-Gas Systems under the Effects of Gravity and Capillary Forces

    , M.Sc. Thesis Sharif University of Technology Taraki, Fateme (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Shamloo, Amir (Supervisor)
    Abstract
    In this thesis, two types of two-phase flow are studied in one dimension. The first type is oil-gas two-phase flow which is miscible and compressible. The second one is oil-water two-phase flow which is immiscible and incompressible. Oil wet and water wet conditions are studied in the second type of flow. Two approaches, i.e. double porosity and double porosity-double permeability, are used to study naturally fractured reservoirs. In these approaches, the matrix and fracture are modeled as two separate media that exchange mass via a transfer function. Black oil model is applied to simulate the fluid system. The governing equations consist of the conservation of mass equations for each... 

    Simulation of Spontaneous Capilary Imbibition and Gravity Effects on Oil Recovery in Naturally Fractured Reservoirs  

    , M.Sc. Thesis Sharif University of Technology Bassirian, Mostaafa (Author) ; Jamshidi, Saeed (Supervisor) ; Bozorgmehri, Ramin (Supervisor)
    Abstract
    Oil reservoirs, have integrated identity; that is they consist of different parameters such as wettablity, initial water saturation, capillary and gravity forces, etc. which are related to each other and affect ultimate recovery simultaneously. In fractured reservoirs, other parameters such as fractures and complex geological structures are also considered  among  important  parameters  which  affect  ultimate  recovery.  Due  to  large  amount  of reserves,  fractured  reservoirs  are  subject  to  different  studies  and  simulations.  In  this  research, different  parameters  which  affect  ultimate  recovery  in  fractured  reservoirs,  are  studied  and simulated. Different  studies ... 

    Evaluation of Transfer Functions of Dual Porosity-dual Permeability Model Using Discrete Fracture Model

    , M.Sc. Thesis Sharif University of Technology Baj, Arash (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; kazemzadeh Hannani, Siamak (Co-Advisor)
    Abstract
    Physics of present work is 2D and two phase immiscible flow under gravity and capillary effect through fractured porous media. Rock properties such as porosity and permeability are homogenous. Discrete fracture model and dual porosity-dual permeability model are used to simulate this problem. Governing equations for such reservoirs are conservation of mass and conservation of momentum. Evaluations are performed in two seperate parts. in the first part, geometry, boundary conditions and initial conditions which important models of transfer functions were calculated are provided by using discrete fracture model and results are compared with results of corresponding reference. Following... 

    Experimental Investigation of the Effects of Suction and Wall Porosity on the Surface Pressure and Aerodynamic Forces in Transonic Wind Tunnel

    , M.Sc. Thesis Sharif University of Technology Amiri, Kaveh (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    Transonic speed is one of the most important flight regimes. There are two main significances related to it. First, all of the supersonic air vehicles should pass through this regime to reach to their final speed. Second, nowadays most of the commercial airplanes fly in nearsonic speeds. According to nonlinear nature of the flow through the speeds, the related researchers haven’t been successful in development of a comprehensive theory as well as subsonic and supersonic ones. So, transonic flow is one of the most critical regimes in wind tunnel testing. In order to eliminate the shock-boundary layer interaction and wave cancellation, perforated walls and side suction are used in test section... 

    Comparison of Transfer Functions in Dual Porosity-Dual Permeability Model in Simulation of Naturally Fractured Reservoirs in Two Phase Water-Oil Systems

    , M.Sc. Thesis Sharif University of Technology Asadbegi, Mohsen (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    In this study, simulation of two-phase water-oil compressible flow in naturally fractured reservoirs is studied. The studied reservoir has a 1D and horizontal ge-ometry that its properties such as porosity and permeability are homogeneous.Dual Porosity and Dual Porosity-Dual Permeability models are employed for simulation of reservoir. Reservoir descriptive equations are conservation of mass and momentum. Conservation of momentum equation is simplified by Darcy law and two-phase fluid flow is simulated with Black-oil model. Discretization of equations is done by finite volume method. In order to solve the equations of two-phase compressible fluid flow, the so-called IMPES (Implicit Pressure...