Loading...
Search for: silica
0.009 seconds
Total 422 records

    Multifunctional tetracycline-loaded silica-coated core-shell magnetic nanoparticles: antibacterial, antibiofilm, and cytotoxic activities

    , Article ACS Applied Bio Materials ; Volume 5, Issue 4 , 2022 , Pages 1731-1743 ; 25766422 (ISSN) Mazraeh, M ; Eshrati Yeganeh, F ; Yousefi, M ; Baniyaghoob, S ; Farasati Far, B ; Akbarzadeh, I ; Bigham, A ; Ashrafizadeh, M ; Rabiee, N ; Makvandi, P ; Saeb, M. R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    In the current study, the physicochemical and biological properties of tetracycline-loaded core-shell nanoparticles (Tet/Ni0.5Co0.5Fe2O4/SiO2 and Tet/CoFe2O4/SiO2) were investigated. The antibacterial activity of nanoparticles alone and in combination with tetracycline was investigated against a number of Gram-positive and Gram-negative bacteria for determining minimum inhibitory concentration (MIC) values. The MIC of Tet/Ni0.5Co0.5Fe2O4/SiO2 nanoparticles turned out to be significantly higher than that of Tet/CoFe2O4/SiO2 nanoparticles. Furthermore, Tet/Ni0.5Co0.5Fe2O4/SiO2 nanoparticles exhibited potent antibiofilm activity against pathogenic bacteria compared to Tet/CoFe2O4/SiO2... 

    Gingerol/letrozole-loaded mesoporous silica nanoparticles for breast cancer therapy: In-silico and in-vitro studies

    , Article Microporous and Mesoporous Materials ; Volume 337 , 2022 ; 13871811 (ISSN) Akbarzadeh, I ; Saremi Poor, A ; Khodarahmi, M ; Abdihaji, M ; Moammeri, A ; Jafari, S ; Salehi Moghaddam, Z ; Seif, M ; Moghtaderi, M ; Lalami, Z. A ; Heydari, M ; Adelnia, H ; Farasati Far, B ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, in-silico properties of Gingerol (Gin) and Letrozole (Let), as two potential anti-cancer drugs, were investigated and some significant ADME drawbacks were predicted. Accordingly, to address the drawbacks, mesoporous silica nanoparticles (MSNs) were prepared, functionalized with zinc, amine, and graphene oxide (GO) (MZNG), and employed for loading and delivery of the both to breast cancer cells in-vitro. Biophysical analysis showed that Let and Gin-loaded MZNGs have spherical structure with a mean diameter of ∼210 nm. The MZNGs provided high entrapment efficiency of Let and Gin with a pH-sensitive sustained release profile. The cytotoxicity assay demonstrated that loading of... 

    Ultra-compact all-optical reversible Feynman gate based on suspended graphene plasmonic waveguides

    , Article Optical and Quantum Electronics ; Volume 54, Issue 5 , 2022 ; 03068919 (ISSN) Safinezhad, A ; Eslami, M. R ; Jafari Jozani, K ; Rezaei, M. H ; Sharif University of Technology
    Springer  2022
    Abstract
    In this paper, we propose a reversible Feynman gate utilizing the interference effect for optical communications and computing. The plasmonic waveguides are created by placing a suspended graphene sheet, held by two SiO2 ridges, 10 nm above the Si ribs. The Finite-difference time-domain (FDTD) method is used to simulate the proposed gate in frequency and time domains. Simulation results show that high extinction ratios as much as (15.12 dB) and 13 dB are achievable at the wavelength of 10 μm for the output bits P and Q, respectively. The device is immune against ± 20% variations in the width of the Si ribs due to fabrication errors and its performance can be controlled by setting the... 

    Tire tread performance of silica-filled SBR/BR rubber composites incorporated with nanodiamond and nanodiamond/nano-SiO2 hybrid nanoparticle

    , Article Diamond and Related Materials ; Volume 126 , 2022 ; 09259635 (ISSN) Salkhi Khasraghi, S ; Momenilandi, M ; Shojaei, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In the present research, the influence of nanodiamond (ND) and a physical hybrid of ND and fumed nano-SiO2 were investigated on the performance of a typical tire tread compound. The styrene-butadiene rubber (SBR) and cis-butadiene rubber (BR) blend filled with a commercial grade highly dispersive silica at 70 phr loading were used as typical tire tread compound. ND was substituted partially with silica at two different concentrations of 5 and 10phr. Meanwhile, 5 phr of ND/nano-SiO2 hybrids with the weight ratio of 2.5/2.5 and 1/4 were substituted with silica. ND-Filled compounds exhibit increased scorch and cure time compared to controls. Improvement in different characteristics of the... 

    A predictive multiphase model of silica aerogels for building envelope insulations

    , Article Computational Mechanics ; Volume 69, Issue 6 , 2022 , Pages 1457-1479 ; 01787675 (ISSN) Tan, J ; Maleki, P ; An, L ; Di Luigi, M ; Villa, U ; Zhou, C ; Ren, S ; Faghihi, D ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    This work develops a systematic uncertainty quantification framework to assess the reliability of prediction delivered by physics-based material models in the presence of incomplete measurement data and modeling error. The framework consists of global sensitivity analysis, Bayesian inference, and forward propagation of uncertainty through the computational model. The implementation of this framework on a new multiphase model of novel porous silica aerogel materials is demonstrated to predict the thermomechanical performances of a building envelope insulation component. The uncertainty analyses rely on sampling methods, including Markov-chain Monte Carlo and a mixed finite element solution of... 

    Tuning the wetting properties of SiO2-based nanofluids to create durable surfaces with special wettability for self-cleaning, anti-fouling, and oil-water separation

    , Article Industrial and Engineering Chemistry Research ; Volume 61, Issue 23 , 2022 , Pages 8005-8019 ; 08885885 (ISSN) Esmaeilzadeh, P ; Ghazanfari, M. H ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Surfaces with special wettability have aroused lots of attention due to their broad applications in many fields. In this work, we systematically report selective and various fabrications of nanofluids based on readily available materials such as SiO2 nanoparticles and polydimethylsiloxane to create superhydrophobic, superoleophobic, superhydrophilic/superoleophobic, and underwater superoleophobic coatings. The efficiency of prepared coatings is investigated on mineral rock plates as porous substrates via the straightforward and cost-effective solution-immersion technique. The static water contact angle of 170°, effortless bouncing of water droplets, and self-cleaning property with a near... 

    Effect of silica encapsulation on the stability and photoluminescence emission of FAPbI3 nanocrystals for white-light-emitting perovskite diodes

    , Article Journal of Alloys and Compounds ; Volume 907 , 2022 ; 09258388 (ISSN) Hasanzadeh Azar, M ; Mohammadi, M ; Tabatabaei Rezaei, N ; Aynehband, S ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The α-FAPbI3 perovskite nanocrystals exhibit interesting optical properties, which make them attractive for versatile optoelectronic applications; however, the spontaneous phase transformation to the non-perovskite phase (δ-FAPbI3) in humid conditions requires a new strategy to improve the phase stability of the material. We employed 3-Aminopropyl triethoxysilane (APTES)-assisted reprecipitation and sol-gel methods at ambient temperature to prepare stable α-FAPbI3 nanocrystals embedded in a silica matrix. Transmission electron microscopy (TEM) and X-ray diffraction analysis determined that ultrafine perovskite nanocrystals (11.5 ± 3 nm) were uniformly distributed in a silica matrix.... 

    Hydrodynamic Analysis and Cake Erosion Properties of a Modified Water-Based Drilling Fluid by a Polyacrylamide/Silica Nanocomposite during Rotating-Disk Dynamic Filtration

    , Article ACS Omega ; Volume 7, Issue 48 , 2022 , Pages 44223-44240 ; 24701343 (ISSN) Movahedi, H ; Jamshidi, S ; Hajipour, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    In this study, the potential of using a polyacrylamide-silica nanocomposite (PAM-S) to control the filtration properties of bentonite water-based drilling muds under different salinity conditions was evaluated. Static filtration tests under low-pressure/low-temperature (LPLT) conditions accompanied by rheological measurements have been carried out to analyze the role of silica nanoparticles (NPs) and nanocomposites (NCs) in the base fluid properties. Moreover, high-pressure/high-temperature (HPHT) static filtration was also investigated to evaluate the thermal stability of PAM-S. Afterward, dynamic filtration has been conducted in a filtration cell equipped with an agitating system with a... 

    Optimisation of combined cooling, heating and power (CCHP) systems incorporating the solar and geothermal energy: a review study

    , Article International Journal of Ambient Energy ; Volume 43, Issue 1 , 2022 , Pages 42-60 ; 01430750 (ISSN) Asadi, R ; Assareh, E ; Moltames, R ; Olazar, M ; Nedaei, M ; Parvaz, F ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Recently, numerous studies have focused on simulation and optimisation of combined cooling, heat, and power (CCHP) systems. This research, from a different perspective, aims to conduct a comprehensive review of the studies performed in the field of solar, geothermal or combined sources, and subsequently analysing the multi-objective evolutionary algorithms to identify the most efficient situation, which satisfy researchers' needs in order to attain a better performance in their ongoing or future research projects. It is worth noting that multi-objective optimisation in these cycles is based on optimising a thermodynamic term (exergy efficiency, thermal efficiency, etc.) and an economic term... 

    Pore network-scale visualization of the effect of brine composition on sweep efficiency and speed of oil recovery from carbonates using a photolithography-based calcite microfluidic model

    , Article Journal of Petroleum Science and Engineering ; Volume 208 , 2022 ; 09204105 (ISSN) Mohammadi, M ; Nikbin Fashkacheh, H ; Mahani, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A novel photolithography-based technique was developed to fabricate a quasi-2D heterogeneous calcite micromodel of representative elementary volume size. The effect of brine-chemistry on the mobilization of capillarity and heterogeneity trapped oil after high salinity water injection was evaluated by using diluted seawater, and seawater modified with calcium, sulphate, and silica nanoparticles. Preliminary brine screening was performed based on modified contact angle experiments under dynamic salinity alteration. The main findings are that the chemical composition of brine impacts both the ultimate oil recovery and its speed. The highest and fastest oil recovery was obtained with diluted... 

    Enhanced electromagnetic wave dissipation features of magnetic Ni microspheres by developing core-double shells structure

    , Article Ceramics International ; Volume 48, Issue 1 , 2022 , Pages 446-454 ; 02728842 (ISSN) Zhang, B ; Mahariq, I ; Tran, N ; Mahmoud, M. Z ; Akhtar, M. N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Readily oxidization of magnetic particles is a common drawback of these type of materials which reduce their electromagnetic wave dissipation performance. In this study, the magnetic core-double shells structured (Ni/SiO2/Polyaniline) composite has been developed for protection of the core from oxidation and in consequent improvement the complex permittivity. Solvothermal and in-situ polymerization methods were utilized for decorating Ni micro-particles with SiO2 and conductive polyaniline polymer respectively. All physico-chemical, magnetic and electromagnetic features were evaluated via XRD, FTIR, XPS, FESEM, VSM and VNA analysis. The double shells composite possesses significant... 

    Characterizing the effect of fines content on the small strain shear modulus of sand-silt mixtures during hydraulic hysteresis

    , Article 4th International Conference on Transportation Geotechnics, ICTG 2021, 23 May 2021 through 26 May 2021 ; Volume 165 , 2022 , Pages 837-849 ; 23662557 (ISSN); 9783030772338 (ISBN) Jebeli, M ; Mohsen Haeri, S ; Khosravi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Small strain shear modulus, Gmax, is one of the most important parameters for the characterization of the behavior of earth structures subjected to static or dynamic loading conditions. This research presents an experimental laboratory study on the effect of non-plastic fines content and hydraulic hysteresis on the Gmax of unsaturated sandy soils. In this regard, clean Firoozkuh No. 161 silica sand which is classified as poorly graded sand was mixed with different percentages of non-plastic Firoozkuh silt. A set of bender element tests were carried out using two modified triaxial devices. The modifications on these two apparatus were to add HAV ceramic discs for air–water control of... 

    Effect of collision on self-assembly of nanoparticles in zirconia microparticle suspension

    , Article Journal of Dispersion Science and Technology ; Volume 43, Issue 6 , 2022 , Pages 787-795 ; 01932691 (ISSN) Jiryaei, Z ; Saidi, M. H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Nanoparticle halo mechanism is a stabilization method for microparticle suspensions. This study investigates suspension pH and nanoparticles–microparticles collision effects on the stabilization of an aqueous binary suspension. The long-term turbidity measurements show that for the nanosilica suspension stability is directly correlated with pH values; however, in the cases of zirconia and binary suspensions, it is not a monotonic function of pH. It is shown that for binary suspension, the halo mechanism is the primary method affecting the stability of the suspension. The suspension is best-stabilized at pH = 5 that is associated with high halo mechanism efficiency, while increased repulsive... 

    Gold-based hybrid nanostructures: more than just a pretty face for combinational cancer therapy

    , Article Biophysical Reviews ; Volume 14, Issue 1 , 2022 , Pages 317-326 ; 18672450 (ISSN) Khafaji, M ; Bavi, O ; Zamani, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    The early diagnosis together with an efficient therapy of cancer is essential to treat cancer patients and to enhance their quality of life. The use of nanostructures, as a newer technology, has demonstrated proven benefits as efficient cancer theranostic agents in numerous recent studies. Having a tunable surface plasmon resonance, gold nanostructures have been the subject of many recent studies as excellent imaging and photothermal therapy agents. However, the potential cytotoxicity and weak stability of gold nanostructures necessitate further modifications using biocompatible materials for biological applications. Based on the composition of the final structure, these gold-based hybrid... 

    Studies of Ponceau 4R food colorant and zinc oxide nanoparticles containing it interactions with DNA and evaluation of their antimicrobial activity

    , Article Journal of Food Processing and Preservation ; Volume 46, Issue 2 , 2022 ; 01458892 (ISSN) Zangeneh Monfared, F ; Shahabadi, N ; Mahmoudi Hashemi, M ; Meibodi, F. S ; Mirjafari, Z ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The current study describes design and synthesis of silica-coated zinc oxide nanoparticles containing Ponceau 4R food colorant (named as ZnO@SiO2@APTMS/P4R). The interactions of Ponceau 4R and ZnO@SiO2@APTMS/P4R with calf thymus-DNA were investigated It should be noted that the competitive binding experiment revealed that both Ponceau 4R and ZnO@SiO2@APTMS/P4R could release Hoechst 33258. As inferred from the results the binding of the Ponceau 4R and ZnO@SiO2@APTMS/P4R with DNA were surface binding, mainly due to groove binding. Furthermore, antibacterial properties of ZnO, Ponceau 4R and ZnO@SiO2@APTMS/P4R samples against gram-positive bacteria and gram-negative bacteria were examined and... 

    Aperiodic perforated graphene in optical nanocavity absorbers

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 276 , 2022 ; 09215107 (ISSN) Bidmeshkipour, S ; Akhavan, O ; Salami, P ; Yousefi, L ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Aperiodic perforated graphene layers were synthesized and used in fabrication of optical nanocavity absorbers. Chemical vapor deposition-grown graphene (Gr) layers were exposed to oxygen plasma etching to obtain the perforated graphene (pGr). The fabricated pGr/SiO2 (68 nm)/Ag (150 nm) nanocavity could present significant higher optical absorption, especially at around 530 nm wavelength region, as compared to a benchmark Gr/SiO2 (68 nm)/Ag (150 nm) sample. The effect of pore size of the pGr layer on the absorption property of the nanocavity has been studied by both experimental and numerical methods. The dependence of the absorption property of the nanocavity on the incident angles of... 

    Removal of naphthalene from aqueous solutions by phosphorus doped-titanium dioxide coated on silica phosphoric acid under visible light

    , Article Desalination and Water Treatment ; Volume 224 , 2021 , Pages 187-196 ; 19443994 (ISSN) Banaei, B ; Hassani, A. H ; Tirgir, F ; Fadaei, A ; Borghaei, S. M ; Sharif University of Technology
    Desalination Publications  2021
    Abstract
    In this research, titanium dioxide-phosphorus (TiO2-P) immobilized on silica phosphoric acid (SPA) was prepared by a simple modified sol–gel method with SPA as a precursor instead of phosphoric acid. TiO2-P thin film photocatalyst immobilized on SPA as a novel high-efficiency photocatalyst was investigated to remove naphthalene as a toxic compound from wastewater. The novel resulting photocatalyst were characterized by energy-dispersive X-ray (EDX) and X-ray diffraction pattern revealed nano-photocatalyst TiO2-P with the average size of 15–20 nm. EDX analysis showed the presence of phosphorus elements in the crystalline structure of TiO2 and diffuse reflectance spectroscopy showed the energy... 

    ZrN fractal-graphene-based metamaterial absorber in the visible and near-IR regimes

    , Article Optik ; Volume 237 , 2021 ; 00304026 (ISSN) Baqir, M. A ; Choudhury, P. K ; Niaz Akhtar, M ; Sharif University of Technology
    Elsevier GmbH  2021
    Abstract
    The absorption characteristics of zirconium nitride (ZrN)-based metamaterial absorber of fractal geometry are studied. The proposed absorber is comprised of fractal metasurface at the top having subwavelength-sized periodic pattern of specially designed ZrN circular nano-discs arranged over silicon dioxide (SiO2) substrate. A tri-layer graphene, owing to its exhibiting better tunability, is introduced at the interface of metasurface and substrate. The bottom side of SiO2 is coated with silver nanolayer to block transmission. The absorptivity essentially depends on the kind of fractal design used in metasurface to configure the absorber. The obtained results exhibit the absorption... 

    Engineering of metallic nanorod-based hyperbolic metamaterials for broadband applications operating in the infrared regime

    , Article Applied Nanoscience (Switzerland) ; Volume 11, Issue 1 , 2021 , Pages 229-240 ; 21905509 (ISSN) Baqir, M. A ; Farmani, A ; Raza, M ; Niaz Akhtar, M ; Hussain, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Metamaterials are manmade structures that have attained considerable attention over the past 2 decades in the modern fields like cloaking, sensing, and imaging owing to their ability to harness electromagnetic fields. In this regard, we have inspected the dielectric properties of the hyperbolic metamaterials (HMM) made of metallic nanorods and dielectric medium at the infrared wavelength regime. The periodically arranged subwavelength-sized metallic nanorods embedded in the silicon dioxide (SiO 2) substrate glass. The spacing between two adjacent nanorods is of subwavelength in size. Furthermore, effective permittivity of the metamaterial has been analyzed by employing the Maxwell Garnett... 

    Influence of metal loading and reduction temperature on the performance of mesoporous NiO–MgO–SiO2 catalyst in propane steam reforming

    , Article Journal of the Energy Institute ; Volume 96 , 2021 , Pages 38-51 ; 17439671 (ISSN) Barzegari, F ; Farhadi, F ; Rezaei, M ; Kazemeini, M ; Keshavarz, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this research, a series of NiO–MgO–SiO2 catalyst samples with various nickel contents (5, 10, 15 and 20 wt %) were prepared by a co-precipitation method followed by a hydrothermal treatment and employed in propane steam reforming. The analyses revealed that the enhancement of the nickel content up to 15 wt % improved the propane conversion to 98.6% at 550 °C. Nonetheless, further increase in the nickel loading reduced the catalyst activity due to the formation of larger and more poorly dispersed active sites. Besides, 15 wt % nickel loading led to the high resistance against coke deposition with no detectable carbon on the catalyst surface. In addition, it was revealed that, the decrease...