Loading...
Search for: silica
0.009 seconds
Total 422 records

    Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane

    , Article Journal of Membrane Science ; Vol. 470, issue , 2014 , pp. 159-165 ; ISSN: 03767388 Maghsoudi, H ; Soltanieh, M ; Sharif University of Technology
    Abstract
    A high silica CHA-type membrane was synthesized by the in-situ crystallization method on a disk like α-alumina porous support to separate both acid (H2S, CO2) gases from methane. The membrane showed a permeance of 3.39×10-8mol/m2sPa for pure CO2with CO2/CH4 ideal selectivity of 21.6 at 303K and 100kPa pressure difference across the membrane. The membrane was also tested with N2 and O2 pure gases indicating a small O2/N2 selectivity of 1.2-1.4, which shows that this type of membrane is not suitable for O2/N2 separation. The membrane performance was also analyzed by binary (CO2-CH4) and ternary (H2S-CO2-CH4) gas mixtures, with compositions near the real sour natural gas (CO2: 2.13mol%, H2S:... 

    Efficient fatty acid esterification using silica supported Brønsted acidic ionic liquid catalyst: Experimental study and DFT modeling

    , Article Chemical Engineering Journal ; Vol. 250 , 2014 , Pages 35-41 ; ISSN: 13858947 Vafaeezadeh, M ; Hashemi, M. M ; Sharif University of Technology
    Abstract
    A task-specific Brønsted acidic ionic liquid (BAIL), 1-benzyl-3-methylimidazolium hydrogensulfate ([BnMIm]HSO4), was prepared and confined onto the high surface area silica gel. The catalyst has shown extraordinary activity in comparison of homogeneous ionic liquid (IL) system for Fischer esterification of fatty acid with ethanol. The ester derivatives were synthesized in high yields and catalyst was easily separated from the reaction mixture by simple filtration. The structure of the catalyst is theoretically modelized to investigate the unusual catalytic activity. Hence, a hydroxylated cage-like nano-cluster, H6Si8O12(OH)2, was selected to mimic the surface of silica gel. The interactions... 

    Investigation of the applicability of nano silica particles as a thickening additive for polymer solutions applied in EOR processes

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, Issue. 12 , 2014 , Pages 1315-1324 ; ISSN: 15567036 Zeyghami, M ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    In past decades, many attempts have been made to use water-soluble polymers as a mobility control agent to improve sweep efficiency of enhanced oil recovery processes. However, sensitivity of the thickening behavior of these polymers to some harsh conditions, such as high salinity, has cast serious doubt on their applicability in reservoir conditions. By expansion of nanotechnology, scientists discovered that nanoparticles can be utilized as thickening and rheology control agents in many polymer solutions. In this study, hydrophilic fumed silica is added to hydrolyzed polyacrylamide and sulfonated polyacrylamide solutions. The effect of the addition of nano silica on the thickening and... 

    Immobilization of dioxomolybdenum(VI) complex bearing salicylidene 2-picoloyl hydrazone on chloropropyl functionalized SBA-15: A highly active, selective and reusable catalyst in olefin epoxidation

    , Article Applied Catalysis A: General ; Vol. 475 , April , 2014 , pp. 55-62 ; ISSN: 0926860X Bagherzadeh, M ; Zare, M ; Salemnoush, T ; Ozkar, S ; Akbayrak, S ; Sharif University of Technology
    Abstract
    A novel organic-inorganic hybrid heterogeneous catalyst system was obtained from the reaction of the molybdenum(VI) complex of salicylidene 2-picoloyl hydrazone with mesoporous silica containing 3-chloropropyl groups prepared by a direct synthetic approach involving hydrolysis and co-condensation of tetraethylorthosilicate (TEOS) and 3-chloropropyltrimethoxysilane in the presence of the triblock copolymer P123 as template under acidic conditions. Characterization of the functionalized materials by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), N2 adsorption/desorption, FT-IR and UV-Vis spectroscopy, and thermogravimetric... 

    Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT

    , Article Thermochimica Acta ; Volume 578 , 20 February , 2014 , Pages 53-58 ; ISSN: 00406031 Baghbanzadeh, M ; Rashidi, A ; Soleimanisalim, A. H ; Rashtchian, D ; Sharif University of Technology
    Abstract
    Regarding the importance of rheological properties of water based drilling fluids, the effects of silica nanospheres, multiwall carbon nanotubes (MWCNTs) and two types of their hybrid, i.e. H1 (80 wt.% silica nanosphere/20 wt.% MWCNT) and H2 (50 wt.% silica nanosphere/50 wt.% MWCNT) on the viscosity and density of distilled water were investigated. According to the results, viscosity and density of the nanofluids increased with the concentration, while they were reduced by increasing the temperature. At high concentrations, the least increase in the viscosity of distilled water by adding the nanomaterials is related to H2 (8.2% increase at 1.0 wt.%). Likewise, the optimum operating... 

    Interaction of ionic liquids with the surface of silica gel using nanocluster approach: A combined density functional theory and experimental study

    , Article Journal of Physical Organic Chemistry ; Vol. 27, issue. 2 , 2014 , pp. 163-167 ; ISSN: 08943230 Vafaeezadeh, M ; Fattahi, A ; Sharif University of Technology
    Abstract
    Silica gel-confined ionic liquid (IL) is a class of heterogeneous catalysts with broad catalytic applications. Leaching of the IL from the surface of the support is the major drawback of these catalysts, which reduce the catalyst efficiency during the chemical reactions. To investigate the effect of the hydrogen bonding on the leaching phenomena, the interaction between the 1-ethyl-3-methylimidazolium-based IL with various anions (Cl-, Br-, HSO4 -, NO3 -, BF 4 -, and PF6 -) and the surface of the silica gel were studied using density functional theory. Hence, a hydroxylated cage-like cluster of silica gel, Si4O6(OH), was selected to mimic the surface. The values of ÎEinteraction show that... 

    In situ preparation and property investigation of polypropylene/fumed silica nanocomposites

    , Article Polymer Composites ; Vol. 35, issue. 1 , January , 2014 , pp. 37-44 ; ISSN: 02728397 Azinfar, B ; Ahmad Ramazani, S. A ; Jafariesfad, N ; Sharif University of Technology
    Abstract
    We present the preparation of polypropylene (PP)/fumed silica (FS) nanocomposites via in situ polymerization in this article. The approach includes preparation and utilization of a bisupported Ziegler-Natta catalytic system in which magnesium ethoxide and FS are used as conjugate supports of the catalyst. Catalyst preparation and polymerization processes are carried out in the slurry phase and under argon atmosphere. Scanning electron microscopy images show a good dispersion of the FS throughout the PP matrix. Results from differential scanning calorimetry reveal that the crystallization temperature of prepared nanocomposites increases by increasing FS loading. Also, crystal content of... 

    Study on the catalytic activity and theoretical modeling of a novel dual acidic mesoporous silica

    , Article RSC Advances ; Volume 4, Issue 32, 2014 , 2014 , Pages 16647-16654 ; ISSN: 20462069 Vafaeezadeh, M ; Fattahi, A ; Sharif University of Technology
    Abstract
    A novel mesoporous silica-functionalized dual Brønsted acidic species has been introduced as an efficient catalyst for solvent-free esterification of fatty acids with ethanol. The structure of the catalyst has been characterized by FT-IR spectroscopy, thermal gravimetric analysis (TGA), TEM and N2 adsorption-desorption. TGA of catalyst 1 showed no weight loss before 200 °C, indicating a high degree of hydrophobicity of the surface of the mesoporous silica. TEM images and nitrogen adsorption-desorption showed no noticeable changes to the structure of the catalyst before and after acid treatment. pH metric analysis was performed for the catalyst to determine the loading of the acidic sites.... 

    Structural and transport properties of polydimethylsiloxane based polyurethane/silica particles mixed matrix membranes for gas separation

    , Article Korean Journal of Chemical Engineering ; Volume 31, Issue 5 , 2014 , Pages 841-848 ; ISSN: 02561115 Semsarzadeh, M. A ; Ghalei, B ; Fardi, M ; Esmaeeli, M ; Vakili, E ; Sharif University of Technology
    Abstract
    Mixed matrix membranes of synthesized polyurethane (PU) based on toluene diisocyanate (TDI), polydimethylsiloxane (PDMS) and polytetramethylene glycol (PTMG) with polyvinyl alcohol based polar silica particles were prepared by solution casting technique. The homogeneity and thermal properties of the prepared PDMS-PU/silica membranes were characterized using scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The SEM micrographs confirmed the distribution of silica particles in the polymer matrix without agglomerations. Gas permeation properties of membranes with different silica contents were studied for pure CO2, CH4, O2, He... 

    Simple and green oxidation of cyclohexene to adipic acid with an efficient and durable silica-functionalized ammonium tungstate catalyst

    , Article Catalysis Communications ; Vol. 43 , 5 January , 2014 , pp. 169-172 Vafaeezadeh, M ; Mahmoodi Hashemi, M ; Sharif University of Technology
    Abstract
    A novel silica-functionalized ammonium tungstate interphase catalyst has been reported as a non-nitric acid route for adipic acid production from one-pot oxidative cleavage of 30% hydrogen peroxide and catalytic amounts of p-toluenesulfonic acid (PTSA). The catalyst has been simply prepared by commercially available starting material. The structure of the catalyst has been investigated using FT-IR spectroscopy, atomic absorption, TEM, SEM and XRD analysis. The catalyst has shown good to high activity even up to 10 runs of reaction. Simple preparation of the catalyst, avoids using harmful phase transfer catalyst (PTC) and/or chlorinated additives are among the other benefits of this work  

    Effect of zircon content on chemical and mechanical behavior of silica-based ceramic cores

    , Article Ceramics International ; Vol. 40, issue. 1 PART A , January , 2014 , p. 1093-1098 Kazemi, A ; Faghihi-Sani, M. A ; Nayyeri, M. J ; Mohammadi, M ; Hajfathalian, M ; Sharif University of Technology
    Abstract
    In this work, the effect of zircon content on the mechanical and chemical behaviors of injection molded silica-based ceramic cores has been investigated. In order to simulate a casting process condition, the sintered samples at 1220 C were consequently heated up to 1430 C. Three point bending tests were carried out on all the prepared samples. The chemical resistance of the prepared cores was evaluated by leaching of samples in 43% KOH solution at its boiling point. Phase evolution and microstructure were investigated by XRD and SEM, respectively. Results showed that increasing zircon content led to an increase in MOR and decrease in leachability owing to the decrease in content of fused... 

    Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting

    , Article Journal of the European Ceramic Society ; Volume 33, Issue 15-16 , 2013 , Pages 3397-3402 ; 09552219 (ISSN) Kazemi, A ; Faghihi Sani, M. A ; Alizadeh, H. R ; Sharif University of Technology
    2013
    Abstract
    In this work, cristobalite crystallization and its effects on mechanical and chemical behaviour of injection moulded silica-based ceramic cores were investigated. In order to simulate casting process condition, the sintered samples at 1220 °C were also heated up to 1430 °C. Flexural strength test was carried out on both sintered and heat treated samples. Chemical resistance of the cores was evaluated by leaching the samples inside 43. wt% KOH solution at its boiling point. Phase evolution and microstructure were investigated by thermal analyses (DTA and DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM). Results showed that cristobalite was... 

    Immobilized palladium nanoparticles on silica functionalized N-propylpiperazine sodium N-propionate (SBPPSP): Catalytic activity evaluation in copper-free Sonogashira reaction

    , Article Journal of the Iranian Chemical Society ; Volume 10, Issue 6 , 2013 , Pages 1291-1296 ; 1735207X (ISSN) Niknam, K ; Deris, A ; Panahi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    2013
    Abstract
    An efficient heterogeneous palladium catalyst system has been developed based on immobilization of Pd nanoparticles on silica-bonded N-propylpiperazine sodium N-propionate (SBPPSP) substrate. SBPPSP substrate can stabilize the Pd nanoparticles effectively so that it can improve their stability against aggregation. In addition, grafted piperazine species on to the silica backbone prevent the removing of Pd nanoparticles from the substrate surface. Transmission electron microscopy (TEM) of catalyst is shown the size of Pd nanoparticles, also it confirmed by particle size analyzer which shown the average size of 21 nm for Pd. The catalytic activity of these catalysts was investigated in the... 

    Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures

    , Article Biochemical Engineering Journal ; Volume 79 , 2013 , Pages 267-273 ; 1369703X (ISSN) Kalantari, M ; Kazemeini, M ; Arpanaei, A ; Sharif University of Technology
    2013
    Abstract
    Nonporous and mesoporous silica-coated magnetite cluster nanocomposites particles were fabricated with various silica structures in order to develop a desired carrier for the lipase immobilization and subsequent biodiesel production. Lipase from Pseudomonas cepacia was covalently bound to the amino-functionalized particles using glutaraldehyde as a coupling agent. The hybrid systems that were obtained exhibited high stability and easy recovery regardless of the silica structure, following the application of an external magnetic field. The immobilized lipases were then used as the recoverable biocatalyst in a transesterification reaction to convert the soybean oil to biodiesel with methanol.... 

    Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite: Comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite

    , Article Adsorption ; Volume 19, Issue 5 , 2013 , Pages 1045-1053 ; 09295607 (ISSN) Maghsoudi, H ; Soltanieh, M ; Bozorgzadeh, H ; Mohamadalizadeh, A ; Sharif University of Technology
    2013
    Abstract
    Adsorption isotherms of H2S, CO2, and CH4 on the Si-CHA zeolite were measured over pressure range of 0-190 kPa and temperatures of 298, 323, and 348 K. Acid gases adsorption isotherms on this type of zeolite are reported for the first time. The isotherms follow a typical Type-I shape according to the Brunauer classification. Both Langmuir and Toth isotherms describe well the adsorption isotherms of methane and acid gases over the experimental conditions tested. At room temperature and pressure of 100 kPa, the amount of CO2 adsorption for Si-CHA zeolite is 29 % greater than that reported elsewhere (van den Bergh et al. J Mem Sci 316:35-45 (2008); Surf Sci Catal 170:1021-1027 (2007)) for the... 

    Molecularly imprinted polydopamine nano-layer on the pore surface of porous particles for protein capture in HPLC column

    , Article Journal of Colloid and Interface Science ; Volume 404 , 2013 , Pages 117-126 ; 00219797 (ISSN) Nematollahzadeh, A ; Shojaei, A ; Abdekhodaie, M. J ; Sellergren, B ; Sharif University of Technology
    2013
    Abstract
    Bio-inspired Human Serum Albumin (HSA) imprinted polydopamine nano-layer was produced through oxidative polymerization of dopamine on the pore surface of HSA modified porous silica particles. The coating thickness was controlled by the reaction time and thereby varied within 0-12. nm. The samples were characterized by elemental analysis, FT-IR, DSC, SEM, TEM, TGA, physisorption and thermoporometry. The characterization confirmed the success of evolution and deposition of polydopamine layer on the silica pore surface. Batch rebinding experiment showed that the molecularly imprinted polymer (MIP) with 8.7. nm coating thickness, in comparison with the thinner and thicker coatings, displays the... 

    Mesoporous silica-functionalized dual Brønsted acidic ionic liquid as an efficient catalyst for thioacetalization of carbonyl compounds in water

    , Article Catalysis Communications ; Volume 41 , 2013 , Pages 96-100 ; 15667367 (ISSN) Vafaeezadeh, M ; Dizicheh, Z. B ; Hashemi, M. M ; Sharif University of Technology
    2013
    Abstract
    A novel silica-functionalized dual Brønsted acidic ionic liquid (ionic liquid with two Brønsted acidic species) has been reported as a highly efficient catalyst for thioacetalization of carbonyl compounds. The reaction was efficiently performed in water as an environmentally benign solvent with good to high yields. Thermal gravimetric analysis showed that the catalyst is stable at least up to 350 C. Furthermore, the catalyst can be recycled and reused for six runs of reaction without appreciable loss of activity. The structure of the catalyst is modelized to gain more realistic structural insight about the functionalized ionic liquid  

    Zeta-potential investigation and experimental study of nanoparticles deposited on rock surface to reduce fines migration

    , Article SPE Journal ; Volume 18, Issue 3 , February , 2013 , Pages 534-544 ; 1086055X (ISSN) Ahmadi, M ; Habibi, A ; Pourafshary, P ; Ayatollahi, S ; Sharif University of Technology
    2013
    Abstract
    Finesmigration is a noticeable problem in petroleum-production engineering. Plugging of throats in porous media occurs because of detachment of fine particles from sand surfaces. Thus, the study of interactions between fines and pore surfaces and the investigation of governing forces are important factors to consider when describing the mechanism of the fines-release process. The main types of these forces are electric double-layer repulsion (DLR) and London-van der Waals attraction (LVA). It may be possible to alter these forces with nanoparticles (NPs) as surface coatings. In comparison with repulsion forces, NPs increase the effect of attraction forces. In this paper, we present new... 

    Modification of silica using piperazine for immobilization of palladium nanoparticles: A study of its catalytic activity as an efficient heterogeneous catalyst for Heck and Suzuki reactions

    , Article Journal of the Iranian Chemical Society ; Volume 10, Issue 3 , 2013 , Pages 527-534 ; 1735207X (ISSN) Niknam, K ; Habibabad, M. S ; Deris, A ; Panahi, F ; Reza Hormozi Nezhad, M ; Sharif University of Technology
    2013
    Abstract
    An efficient heterogeneous palladium catalyst system has been developed based on immobilization of Pd nanoparticles on silica-bonded N-propylpiperazine (SBNPP) substrate. SBNPP substrate can stabilize the Pd nanoparticles effectively so that it can improve their stability against aggregation. Also, grafted piperazine species onto the silica backbone prevents the removing of Pd nanoparticles from the substrate surface. It seems that the high recyclable capability of Pd-SBNPP catalysts is resulted from these two characteristics. Transmission electron microscopy (TEM) of catalyst is shown the size of Pd nanoparticles in Pd-SBNPP average of 20 nm. Furthermore, X-ray photoelectron spectroscopy... 

    Silica-supported DABCO-tribromide: A recoverable reagent for oxidation of alcohols to the corresponding carbonyl compounds

    , Article Scientia Iranica ; Volume 20, Issue 3 , 2013 , Pages 598-602 ; 10263098 (ISSN) Moghaddam, F. M ; Masoud, N ; Foroushani, B. K ; Saryazdi, S ; Ghonouei, N ; Daemi, E ; Sharif University of Technology
    2013
    Abstract
    In this study, 1,4-diazabicy lo[2.2.2] octane (DABCO) tribromide was immobilized on silica support by using 3-chloro propyl trimethoxy silane to obtain a silica-supported DABCO tribromide reagent. The synthesized reagent was characterized with elemental analysis, FT-IR spectroscopy, and thermo-gravimetric analysis (TGA). This reagent has been applied in the conversion of alcohol to corresponding carbonyl compounds. Alcohol oxidation reactions yield in 52-95%, and the reagent may be recycled five times with further bromine treatment