Loading...
Search for: silicones
0.015 seconds
Total 566 records

    A combined first principles and analytical treatment for determination of the surface elastic constants: Application to Si(001) ideal and reconstructed surfaces

    , Article Philosophical Magazine Letters ; Volume 92, Issue 1 , Sep , 2012 , Pages 7-19 ; 09500839 (ISSN) Ojaghnezhad, F ; Shodja, H. M ; Sharif University of Technology
    2012
    Abstract
    Behavior of nanostructures, which are characterized by a large surface-to-volume ratio, is greatly influenced by their surface parameters, such as surface elastic moduli tensor. Accurate determination of the surface elastic constants by first principles is of particular interest. To this end, through consideration of the fundamental thermodynamic arguments for free solid surfaces, an analytical formulation for the change in specific Helmholtz surface free energy is developed. Relating this formulation to the corresponding energy calculated via first principles leads to the determination of the surface elastic moduli tensor. The surface mechanical properties, namely surface energy, surface... 

    Cutting model in machining of Al/SiC p metal matrix composite

    , Article Advanced Materials Research, 15 December 2011 through 18 December 2011, Hong Kong ; Volume 410 , 2012 , Pages 291-297 ; 10226680 (ISSN) ; 9783037853160 (ISBN) Nikouei, S. M ; Yousefi, R ; Kouchakzadeh, M. A ; Kadivar, M. A ; Sharif University of Technology
    2012
    Abstract
    Prediction of shear plane angle is a way for prediction of the mechanism of chip formation, machining forces and so on. In this study, Merchant and Lee-Shaffer theories are used for prediction of shear plane angles and cutting forces in machining of Al/SiC p MMC with 20% of SiC as reinforcement particles. The experimental cutting forces are compared with the calculated cutting force based on shear plane angles extracted from Merchant and Lee-Shaffer theories. The variation of these cutting forces with cutting speed, feed rate and depth of cut has been discussed. The results showed that Merchant theory may be used as a good method for prediction of chip formation in machining of Al/SiC p MMC  

    Burr size reduction in drilling of Al/SiC metal matrix composite by ultrasonic assistance

    , Article Advanced Materials Research, 15 December 2011 through 18 December 2011 ; Volume 410 , December , 2012 , Pages 279-282 ; 10226680 (ISSN) ; 9783037853160 (ISBN) Kadivar, M. A ; Yousefi, R ; Akbari, J ; Rahi, A ; Nikouei, S. M ; Sharif University of Technology
    Abstract
    Metal matrix composites (MMCs) have received considerable attention due to their excellent engineering properties. Accuracy and surface finish play an important role in modern industry. Undesired projections of materials, known as burrs, reduce the part quality and negatively affect the assembly process. In this study, reducing burr size in drilling of MMC is performed by adding ultrasonic vibration to the process. Al/SiC p MMC with 5 wt% of SiC particulates in dry drilling operation with HSS drill tools coated with TiN was investigated. The effect of ultrasonic assistance on burr size was studied. The results demonstrate that under suitable ultrasonic vibration conditions, in comparison... 

    The effect of Mn addition on the microstructure and mechanical properties of gas-atomized Al-20Si-5Fe-3Cu-1Mg powder

    , Article Advanced Materials Research, 15 December 2011 through 18 December 2011 ; Volume 410 , 2012 , Pages 253-256 ; 10226680 (ISSN) ; 9783037853160 (ISBN) Moazzenipoor, P ; Rajabi, M ; Davami, P ; Sharif University of Technology
    2012
    Abstract
    In this study, Al-20Si-5Fe-3Cu-1Mg-XMn (X=0,1.5,3) alloys were synthesized by the gas atomizing technique. The microstructure and mechanical properties of the powders were investigated using optical microscopy, scanning electron microscopy, X-ray diffractometery method, and microhardness test. Microstructure of the powders composed of α-Al, Si and iron intermetallic compounds. As the powder particle size decreases, the phases become finer. A significant refinement in the size of iron-containing compounds was observed by addition of Mn. The microstructural refinement by controlling the particle size leads to an increase in the hardness of the powder particles in the amount of 33-45% dependent... 

    Aging behaviors of Al 6061 and Al 6061/ SiCp composite

    , Article Advanced Materials Research ; Volume 410 , 2012 , Pages 240-244 ; 10226680 (ISSN) ; 9783037853160 (ISBN) Ourang, S. M. R ; Ekrami, A ; Seyed Reihani, S. M ; Mousavi Abarghouie, S. M. R ; Sharif University of Technology
    2012
    Abstract
    In the present research the aging behavior of Al6061 alloy and Al6061/SiCp composite fabricated by powder metallurgy method was investigated. The solution treatment of the samples were carried out at 527°C for 2, 3and 4 h followed by aging at 180°C for different aging times between 1 and 10 h. The existence of SiC particles led to increasing the peak hardness of the composite. The peak hardness of the composite took place at shorter times than that of the 6061 alloy for the samples solution treated for 3and 4 h, but took place at longer times for the samples solution treated for 2 h. The optimum solution treating time was about 3 h for both the composite and the 6061 alloy that led to the... 

    Evaluation of ceramic/ceramic joint interface prepared via brazing

    , Article Materials Forum, 18 October 2011 through 20 October 2011 ; Volume 35 , October , 2011 , Pages 20-30 ; 08832900 (ISSN) ; 9781876855369 (ISBN) Ghazi Daryani, A ; Nemati, A ; Sharif University of Technology
    Abstract
    Recent investigations show that ceramic/ceramic joints have high potential for applications in industry. Cost and difficulty in manufacturing complex components, either in one step or by joining of ceramic-metal and ceramic-ceramic, have inhibited more widespread use. It is important to know how to join components without problems and to understand the role of the interface as the main factor controlling the properties in these joints. The purpose of this paper was to investigate the joining of two ceramics with metal fillers (SiC to SiC and Al2O3 to Al2O3) and to investigate the interface of SiC/SiC and Al2O3/Al 2O3 with the same metal interlayer (Ag-Cu-Ti) and the effects on the... 

    An optimized phased-array antenna for intra-chip communications

    , Article LAPC 2011 - 2011 Loughborough Antennas and Propagation Conference, 14 November 2011 through 15 November 2011 ; November , 2011 , Page(s): 1 - 4 ; 9781457710155 (ISBN) Tavakoli, E ; Tabandeh, M ; Kaffash, S ; Sharif University of Technology
    2011
    Abstract
    The continued migration to smaller nanometer geometries brought fundamental limits to traditional on-chip hard wires performance. According to the International Technology Roadmap for Semiconductor (ITRS), feature size shrinking leads an increase in the operating frequency of RFCMOS devices. Thus, new interconnect methodologies such as radio frequency (RF) wireless can be employed on future chips projected for intra-chip wireless data communications. The size of Si integrated antenna in these frequencies will be several millimetres and the antenna length will be decrease by frequency increasing. In this paper, we have proposed an optimum radiation pattern achieved by a phased array (PA)... 

    Investigation of optical detection strategies for transabdominal fetal heart rate detection using three-layered tissue model and Monte Carlo simulation

    , Article Optica Applicata ; Volume 41, Issue 4 , 2011 , Pages 885-896 ; 00785466 (ISSN) Gan, K. B ; Zahedi, E ; Mohd Ali, M. A ; Sharif University of Technology
    Abstract
    In this paper, the Monte Carlo technique is used to determine the optical detection strategies in three-layered (maternal, amniotic fluid and fetal) tissue model. This model is utilized to estimate the transabdominal optical power and optimum source-detector (S-D) separation. Results based on the launching of 2 million photons with 1 mW optical power showed that the expected optical power output is in the range of 10 -6-10 -10 W/cm 2 depending on S-D separation. Considering the limit of the signal processing methods (such as adaptive noise cancelling) and the use of silicon photodetector, an S-D separation of 4 cm has been selected as a practical compromise between signal level and... 

    Numerical simulation of thermal barrier coating system under thermo-mechanical loadings

    , Article Proceedings of the World Congress on Engineering 2011, WCE 2011, 6 July 2011 through 8 July 2011 ; Volume 3 , July , 2011 , Pages 1959-1964 ; 9789881925152 (ISBN) Moridi, A ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    2011
    Abstract
    In the present paper, numerical simulation of thermal barrier coating system under thermo-mechanical loadings is performed, using the finite element method in ABAQUS software. The base material is Aluminum-silicon alloy, A356.0 which is widely used in automotive components such as diesel engine cylinder heads. Thermal barrier coatings (TBCs) are applied to combustion chamber in order to reduce fuel consumption and pollutions and also improve fatigue life of components. The roughness effect of coating layers on stress distribution of test specimens is investigated. Semi-ellipsoid roughness of the interfaces between substrate/bond coat and bond coat/top coat are simulated to get the stress... 

    Novel unbreakable solid-phase microextraction fiber by electrodeposition of silica sol-gel on gold

    , Article Journal of Separation Science ; Volume 34, Issue 22 , 2011 , Pages 3246-3252 ; 16159306 (ISSN) Bagheri, H ; Sistani, H ; Ayazi, Z ; Sharif University of Technology
    Abstract
    A new technique for preparation of an unbreakable solid-phase microextraction (SPME) fiber, using sol-gel technology is developed. Primarily, an ultrathin two-dimensional intermediate film was prepared by hydrolysis of 3-(trimethoxysilyl)-1-propanthiol self-assembled monolayer grafted onto gold, then a stationary phase by electrodeposition of 3-(trimethoxysilyl) propylmethacrylate as a precursor, tetramethyl orthosilicate and polyethylene glycol as a coating polymer was produced. The scanning electron microscopy images revealed that the new fiber exhibits a rather porous and homogenous surface. The thermal stability of the fabricated fiber was investigated by thermogravimetric analysis. The... 

    The influence of nanoparticles on hydrodynamic characteristics and mass transfer performance in a pulsed liquid-liquid extraction column

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 50, Issue 11-12 , 2011 , Pages 1198-1206 ; 02552701 (ISSN) Bahmanyar, A ; Khoobi, N ; Mozdianfard, M. R ; Bahmanyar, H ; Sharif University of Technology
    Abstract
    With respect to the influence of nanoparticles on mass transfer characteristics, limited number of studies available in the literature, deal primarily with gas-liquid systems. In this work, mass transfer performance and hydrodynamic characteristics including static and dynamic dispersed phase hold-ups of nanofluids have been investigated for pulsed liquid-liquid extraction column (PLLEC). The nanofluids used were prepared by dispersing SiO2 nanoparticles of 0.01, 0.05 and 0.1 volume percent with two different hydrophobicities in kerosene as base fluid using ultrasonication. UV-vis spectrophotometer was also used for evaluation of the nanofluids stability. The results were compared with... 

    Molecular dynamics investigation of β-SiC behavior under three-axial tensile loading

    , Article Journal of Computational and Theoretical Nanoscience ; Volume 8, Issue 11 , 2011 , Pages 2187-2192 ; 15461955 (ISSN) Mortazavi, B ; Simchi, A ; Besharati Givi, M. K ; Rajabpour, A ; Sharif University of Technology
    2011
    Abstract
    Molecular dynamics (MD) simulations were used to study the mechanical behaviour of β-SiC at nano-scale under tensile loading. Effects of loading rate and tensile temperature on the mechanical properties and failure were studied. Modified embedded-atom method (MEAM) potential and Berendsen thermostat were utilized for modelling. Periodic boundary conditions were employed and the behaviour of material was analyzed under three-axial loading condition at which the stress- strain relation was acceptably size independent. It is shown that with increasing the loading rate from 5 m/s to 70 m/s, the failure strain increases without a remarkable change in the stress-strain relationship. The MD... 

    Electrodeposition and characterization of Ni-Co/SiC nanocomposite coatings

    , Article Journal of Alloys and Compounds ; Volume 509, Issue 39 , 2011 , Pages 9406-9412 ; 09258388 (ISSN) Bahadormanesh, B ; Dolati, A ; Ahmadi, M. R ; Sharif University of Technology
    2011
    Abstract
    Ni-Co/SiC nanocomposite coatings were electrodeposited in a modified watt type of Ni-Co bath containing 20 nm SiC particles to be codeposited. Potentiodynamic polarization tests were conducted to study the effect of the SiC particulates on the electrodeposition of Ni and Co. Scanning electron microscopy was used to assess the morphology of the Ni-Co alloy and Ni-Co/SiC nanocomposite coatings. The distribution of the particulates in the matrix was considered by means of transmission electron microscopy. Applying nanomechanical testing instruments coupled to atomic force microscopy, mechanical properties of the alloy and composite coatings were studied and compared. The presence of 11 vol.%... 

    The influence of SiC particles on tool wear in machining of Al/SiC metal matrix composites produced by powder extrusion

    , Article Advanced Materials Research, 18 September 2011 through 21 September 2011, Stuttgart ; Volume 325 , 2011 , Pages 393-399 ; 10226680 (ISSN) ; 9783037852316 (ISBN) Yousefi, R ; Kouchakzadeh, M. A ; Rahiminasab, J ; Kadivar, M. A ; Sharif University of Technology
    2011
    Abstract
    Metal matrix composites (MMCs) have received considerable attention due to their excellent engineering properties. However, poor machinability has been the main deterrent to their substitution for metal parts. The hardness and abrasive nature of reinforcement phase causes rapid tool wear during machining which results in high machining costs. In this study, the effect of SiC particles (5, 15 & 20 percent) on tool wear in turning process is experimentally investigated. Continuous dry turning of Al/SiC particulate metal matrix composite produced by powder metallurgy and utilizing titanium carbide inserts has been achieved as the test method. The influence of machining parameters, e.g. cutting... 

    Coating thickness and roughness effect on stress distribution of A356.0 under thermo-mechanical loadings

    , Article Procedia Engineering, 5 June 2011 through 9 June 2011 ; Volume 10 , June , 2011 , Pages 1372-1377 ; 18777058 (ISSN) Moridi, A ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    2011
    Abstract
    Cast aluminium-silicon alloy, A356.0, is widely used in automotive components such as diesel engine cylinder heads and also in aerospace industries because of its outstanding mechanical, physical, and casting properties. Thermal barrier coatings are applied to combustion chamber in order to reduce fuel consumption and pollutions and also improve fatigue life of components. However, studies on behaviour of A356.0 with thermal barrier coating are still rare. The purpose of the present work is to simulate stress distribution of A356.0 under thermo-mechanical cyclic loadings, using a two-layer elastic-visco-plastic model of ABAQUS software. The results of stress-strain hysteresis loop are... 

    Crystallization kinetics of glass-ceramics by differential thermal analysis

    , Article Ceramics - Silikaty ; Volume 55, Issue 2 , May , 2011 , Pages 188-194 ; 08625468 (ISSN) Ghasemzadeh, M ; Nemat, A ; Nozad, A ; Hamnabard, Z ; Baghshah, S ; Sharif University of Technology
    2011
    Abstract
    The crystallization behavior of fluorphlogopite, a glass-ceramic in the MgO-SiO2-Al2O3-K2O-B 2O3-F system, was studied by substitution of Li 2O for K2O in the glass composition. DTA, XRD and SEM were used for the study of crystallization behavior, formed phases and microstructure of the resulting glass-ceramics. Crystallization kinetics of the glass was investigated under non-isothermal conditions, using the formal theory of transformations for heterogeneous nucleation. The crystallization results were analyzed, and both the activation energy of crystallization process as well as the crystallization mechanism were characterized. Calculated kinetic parameters indicated that the appropriate... 

    Study and production of silicone rubber and polyethylene alloy

    , Article Journal of Thermoplastic Composite Materials ; Volume 24, Issue 5 , 2011 , Pages 669-677 ; 08927057 (ISSN) Tavakkoli, H ; Meibod, M. P ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    2011
    Abstract
    Linear silicone rubber and polyethylene alloy produced from extrusion-injecting process will be present in separate phases. While samples are mixed with 1% dicumylperoxide, DCP, and injected in extruder, an alloy is almost formed. In addition, when the samples containing silicon rubber with vinyl group are mixed with polyethylene and passed in the vicinity of electron beam, a similar reaction occurs, as confirmed from FTIR spectrum. The water contact angles for the samples has been listed in the article. Furthermore, the crystallinity of samples produced via electron beam method is more than that obtained from peroxide method. On the other hand, the tensile strengths of produced samples via... 

    New grafted nanosilica-based sorbent for needle trap extraction of polycyclic aromatic hydrocarbons from water samples followed by GC/MS

    , Article Chromatographia ; Volume 74, Issue 5-6 , September , 2011 , Pages 429-436 ; 00095893 (ISSN) Bagheri, H ; Roostaie, A ; Babanezhad, E ; Sharif University of Technology
    2011
    Abstract
    In this work, the preparation of a new grafted nanosilica-based sorbent was extensively investigated. An inexpensive modifier, cis-9-octadecenoic acid (oleic acid) was selected to be grafted on the surface of the nanosilica particles as the support. The grafting process was accurately confirmed by Fourier transform infra-red spectrometry (FT-IR). Applicability of the prepared sorbent was thoroughly examined by needle trap extraction (NTE) method. The grafted sorbent was dispersed in the appropriate solvent and carefully packed inside a steel needle. Feasibility of the method was completely examined using polycyclic aromatic hydrocarbons (PAHs), as model compounds. For extraction of analytes... 

    Growth of ZNO nanostructures on porous silicon and oxidized porous silicon substrates

    , Article Brazilian Journal of Physics ; Volume 41, Issue 2-3 , 2011 , Pages 113-117 ; 01039733 (ISSN) Rajabi, M ; Dariani, R. S ; Iraji Zad, A ; Sharif University of Technology
    Abstract
    We have investigated an oxidation of substrate effect on structural morphology of zinc oxide (ZnO) rods. ZnO rods are grown on porous silicon (PS) and on thermally oxidized porous silicon substrates by carbothermal reduction of ZnO powder through chemical vapour transport and condensation. Porous silicon is fabricated by electrochemical etching of silicon in hydrofluoric acid solution. The effects of substrates on morphology and structure of ZnO nanostructures have been studied. The morphology of substrates is studied by atomic force microscopy in contact mode. The texture coefficient of each sample is calculated from X-ray diffraction data that demonstrate random orientation of ZnO rods on... 

    Tunable bandgap opening in the proposed structure of silicon-doped graphene

    , Article Micro and Nano Letters ; Volume 6, Issue 8 , 2011 , Pages 582-585 ; 17500443 (ISSN) Azadeh, M. S. S ; Kokabi, A ; Hosseini, M ; Fardmanesh, M ; Sharif University of Technology
    2011
    Abstract
    A specific structure of doped graphene with substituted silicon impurity is introduced and ab initio density-functional approach is applied for the energy band structure calculation of the proposed structure. Using the band structure calculation for different silicon sites in the host graphene, the effect of silicon concentration and unit cell geometry on the bandgap of the proposed structure is also investigated. Chemically, silicon-doped graphene results in an energy gap as large as 2eV according to density-functional theory calculations. As the authors will show, in contrast to previous bandgap engineering methods, such structure has significant advantages including wide gap tuning...