Loading...
Search for: solar-cells
0.014 seconds
Total 369 records

    A novel low-temperature growth of uniform CuInS2 thin films and their application in selenization/sulfurization-free CuInS2 solar cells

    , Article Materials Today Communications ; Volume 26 , 2021 ; 23524928 (ISSN) Dehghani, M ; Parvazian, E ; Alamgir Tehrani, N ; Taghavinia, N ; Samadpour, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In terms of manufacturability, there is a high tendency to deposit light-absorbing CuInS2 films by solution processing methods like ink-based depositions. In particular, for nanoparticle inks, the synthesis of highly dispersed and stable inks, with uniformity in the deposition process, is a serious challenge. Here, we demonstrate a novel two-step low-temperature CuInS2 film deposition method in which the In2S3 is deposited first. It then partially is converted into CuInS2 through the infiltration of Cu+ ions in the In2S3 layer in a dip-coating process. The resulting films are highly uniform, with diffraction peaks indicating the formation of pure CuInS2 phase. The proper stoichiometry of... 

    When photoluminescence, electroluminescence, and open-circuit voltage diverge-light soaking and halide segregation in perovskite solar cells

    , Article Journal of Materials Chemistry A ; Volume 9, Issue 24 , 2021 , Pages 13967-13978 ; 20507488 (ISSN) Ebadi, F ; Yang, B ; Kim, Y ; Mohammadpour, R ; Taghavinia, N ; Hagfeldt, A ; Tress, W ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Perovskite solar cells suffer from various instabilities on all time scales. Some of them are driven by light, in particular when employing compounds with mixed halides. Such light soaking effects have been observed to result in performance changes of solar-cell devices. They have also been spectroscopically investigated in detail on films, where the formation of a low-gap iodine-rich phase, seen as a red shift of the PL, has been found to be responsible for a reduced open-circuit voltage. However, studies synchronously examining device performance and its relation to spectroscopy data are scarce. Here, we perform an in operando study, where we investigate the changes of open-circuit voltage... 

    Polyvinylcarbazole as an efficient interfacial modifier for low-cost perovskite solar cells with CuInS2/Carbon hole-collecting electrode

    , Article Solar RRL ; Volume 5, Issue 7 , 2021 ; 2367198X (ISSN) Ghavaminia, E ; Behrouznejad, F ; Forouzandeh, M ; Khosroshahi, R ; Darbari, S ; Zhan, Y ; Taghavinia, N ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Different polymers have been already introduced for passivating the interfacial defects at the interface of perovskite and the organic hole transport material, meanwhile as an environmental barrier in perovskite solar cells (PSCs). Herein, polyvinylcarbazole (PVK) compared to polymethylmethacrylate (PMMA) at the interface of the perovskite (Cs0.05(MA0.83FA0.17)0.95Pb(Br0.17I0.83)3) layer and CuInS2/carbon as a low-cost inorganic hole-collecting electrode are investigated. By suppressing interfacial recombination using PMMA and PVK, saturation current density (in dark current) decreases one order of magnitude from 7.9 × 10−10 to 4.0 × 10−11 mA cm−2 by adding PMMA and two orders of magnitude... 

    Enhanced TiO2broadband photocatalytic activity based on very small upconversion nanosystems

    , Article Journal of Physical Chemistry C ; Volume 125, Issue 25 , 2021 , Pages 13788-13801 ; 19327447 (ISSN) Maryam Sadat, M ; Madaah Hosseini, H. R ; Mohajerani, E ; Pedroni, M ; Taheri Ghahrizjani, R ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Efficient sunlight harvesting is of great significance for environmental remediation through photocatalysis. Herein, very small (20 nm) upconverter SrF2:Yb,Tm@CaF2:Yb@Fluorine-doped TiO2heteronanoparticles (denoted as UCNPs@TiO2) with strong UV-blue emission and broadband photocatalytic performance were prepared via a facile three-step hydrothermal method for the first time. The SrF2:Yb,Tm upconverter nanoparticles (NPs) were produced as the light-emitting core, epitaxially grown CaF2:Yb as the middle shell to enhance the upconversion luminescence output and TiO2as the photocatalyst outermost layer. Superior photocatalytic functioning of UCNPs@TiO2was affirmed through methylene blue (MB)... 

    Smoothing and coverage improvement of SnO2 electron transporting layer by NH4F treatment: Enhanced fill factor and efficiency of perovskite solar cells

    , Article Solar Energy ; Volume 228 , 2021 , Pages 253-262 ; 0038092X (ISSN) Keshtmand, R ; Zamani Meymian, M. R ; Mohamadkhani, F ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Surface modification of SnO2 electron transporting layer (ETL) plays a critical role in the performance of SnO2-based planar perovskite solar cells (PSC). Here, we show how long-time NH4F-based water bath treatment of SnO2 layer makes smoothing and morphological improvements and enhances the device performance. Recently it was shown that short-time NH4F treatment (2 sec) with spin coating method reduces interface traps by improving surface chemistry. Here we observe the smoothing of SnO2 films as a result of long-time NH4F treatment, which could be a result of a slight etching-deposition process. Absorption and resistivity measurements indicate that SnO2 etching process is involved in... 

    Improving the performance of planar perovskite solar cell using NH4Cl treatment of SnO2 as electron transport layer

    , Article Surfaces and Interfaces ; 2021 ; 24680230 (ISSN) Keshtmand, R ; Zamani Meymian, M. R ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Here in this research, a modified interface between the electron transport layer (ETL) and the perovskite layer in a perovskite solar cell (PSC) is provided by adding the ammonium chloride (NH4Cl) to the tin oxide (SnO2) as the modified ETL of a planar structure as follows: fluorine-doped tin oxide (FTO)/NH4Cl-SnO2/Mixed cation perovskite/Copper indium disulfide (CIS)/Gold (Au). The effects of NH4Cl on ETL are investigated in different amounts from 0.003 to 0.02 M and the best results were obtained in the amount of 0.013 M. The best NH4Cl-SnO2 ETL could increase the power conversion efficiency (PCE) of fabricated planar PSC by 16.79% with open-circuit voltage (Voc) of 1.15 V and negligible... 

    Engineering of CIGS nanoparticle inks for colloidal stability, uniform film formation and application as HTL for perovskite solar cells

    , Article Journal of Industrial and Engineering Chemistry ; 2021 ; 1226086X (ISSN) Khosroshahi, R ; Tehrani, N. A ; Forouzandeh, M ; Behrouznejad, F ; Taghavinia, N ; Bagherzadeh, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2021
    Abstract
    In this work, synthesis of CuIn0.75Ga0.25S2 (CIGS) nanoparticles, the formation of stable dispersion, deposition of high-quality films and, fabrication of thin-film Perovskite solar cells are reported. The stability of nanoparticle ink is crucial in the formation of device-quality films. The chalcogenide-based materials are widely used in thin-film solar cells; in particular, Cu(In,Ga)S2 are used as an absorber and hole transporting layer. In the present study, the nanoparticles of about 20 nm size and bandgap of 1.5 eV are synthesized using a heat-up method. A variety of solvents are used as dispersing media and the stability of the inks is evaluated by precise optical monitoring. We... 

    A new designed linear Fresnel lens solar concentrator based on spectral splitting for passive cooling of solar cells

    , Article Energy Conversion and Management ; Volume 230 , 2021 ; 01968904 (ISSN) Kiyaee, S ; Saboohi, Y ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The use of solar concentrators can be an alternative for initial cost reduction in the PV systems. However, they suffer from high cell temperature that can be overcome by different active or passive cooling approaches. Spectral splitting and the elimination of high-energy solar photons are effective solutions for cell temperature reduction. In this study, we developed a Polymethyl methacrylate Spectral Splitting Fresnel Lens (SSFL) for linear concentration using a new design, which directs the desired portion of the spectrum towards the cell and diffracts the rest to eliminate the use of beam splitters or nanofluids in the spectral splitting system. Different SSFLs were considered for... 

    Sb2S3 and Cu3SbS4 nanocrystals as inorganic hole transporting materials in perovskite solar cells

    , Article Solar Energy ; Volume 223 , 2021 , Pages 106-112 ; 0038092X (ISSN) Mohamadkhani, F ; Heidariramsheh, M ; Javadpour, S ; Ghavaminia, E ; Mahdavi, S. M ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    One of the key parts of perovskite solar cells which has great influence on their performance and stability is hole transporting layer. Spiro-OMeTAD is extensively used as organic hole transporting material in perovskite solar cells. However, Spiro-OMeTAD is expensive and has low chemical stability. In this study, the solution processed Sb2S3 and Cu3SbS4 nanocrystals have been synthesized and then the n-i-p mesoscopic perovskite solar cells have been fabricated using Spiro-OMeTAD, Sb2S3 and Cu3SbS4 nanocrystals as hole transporting layer at ambient air condition. It is shown that the conduction and valence band levels of the synthesized Sb2S3 and Cu3SbS4 nanocrystals are in the proper... 

    Encapsulation strategies for highly stable perovskite solar cells under severe stress testing: damp heat, freezing, and outdoor illumination conditions

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 38 , 2021 , Pages 45455-45464 ; 19448244 (ISSN) Mohammadi, M ; Gholipour, S ; Malekshahi Byranvand, M ; Abdi, Y ; Taghavinia, N ; Saliba, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    A key direction toward managing extrinsic instabilities in perovskite solar cells (PSCs) is encapsulation. Thus, a suitable sealing layer is required for an efficient device encapsulation, preventing moisture and oxygen ingression into the perovskite layer. In this work, a solution-based, low-cost, and commercially available bilayer structure of poly(methyl methacrylate)/styrene-butadiene (PMMA/SB) is investigated for PSCs encapsulation. Encapsulated devices retained 80% of the initial power conversion efficiency (PCE) at 85 °C temperature and 85% relative humidity after 100 h, while reference devices without SB (only PMMA) suffer from rapid and intense degradation after only 2 h, under the... 

    Solution-processed perovskite thin-films: The journey from lab: The large-scale solar cells

    , Article Energy and Environmental Science ; Volume 14, Issue 11 , 2021 , Pages 5690-5722 ; 17545692 (ISSN) Saki, Z ; Byranvand, M. M ; Taghavinia, N ; Kedia, M ; Saliba, M ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    In the last decade, the power conversion efficiency (PCE) of solution-processed perovskite solar cells (PSCs) in the lab-scale has reached an incredible level of 25.5%. Generally, PSCs are composed of a stack consisting of a perovskite thin-film sandwiched between an electron transporting layer (ETL) and a hole transporting layer (HTL). Although the quality of the ETL and HTL interfaces with the perovskite thin-film is important, the quality of the perovskite thin-film is also critical to achieving high-performance PSCs. Low-temperature deposition of organic-inorganic perovskite thin-films by simple solution processes is one of the significant advantages of PSCs compared to other... 

    Water repellent room temperature vulcanized silicone for enhancing the long-term stability of perovskite solar cells

    , Article Solar Energy ; Volume 218 , 2021 , Pages 28-34 ; 0038092X (ISSN) Samadpour, M ; Heydari, M ; Mohammadi, M ; Parand, P ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A key direction toward enhancing the long term and outdoor stability of the perovskite solar cells is encapsulation. As a result, a suitable encapsulation package is required to prevent moisture and oxygen penetration toward the perovskite solar cells. In this work, a low-cost commercially available bilayer structure of poly (methyl methacrylate)/ room-temperature vulcanizing silicone rubber (RTV) encapsulation package for enhancing the long term stability of the perovskite solar cells has been investigated. Encapsulated cells retained more than 80% of the initial efficiency at the environmental condition of 50% moisture, and room temperature after 1000 h, however reference cell efficiency... 

    Modified antisolvent method for improving the performance and stability of triple-cation perovskite solar cells

    , Article ACS Omega ; Volume 6, Issue 1 , 2021 , Pages 172-179 ; 24701343 (ISSN) Samadpour, M ; Golchini, A ; Abdizadeh, K ; Heydari, M ; Forouzandeh, M ; Saki, Z ; Taghavinia, N ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Antisolvent crystallization is known as an effective approach for the deposition of pinhole-free solution-processed perovskite layers for high-performance solar cells. Here, we introduce a modified antisolvent dripping method by adding tetra ethyl orthosilicate (TEOS) into chlorobenzene as a conventional antisolvent. Through TEOS modification, perovskite solar cells show efficiencies as high as 16% with more than 85% retention after 290 h storage at ambient conditions in comparison to 20% in pristine cells. This significant enhancement in efficiency and stability mainly related to the decrement of the density of surface defects, which is confirmed by considerably enhanced photoluminescence... 

    A Study on Optoelectronic Properties of Copper Zinc Tin Sulfur Selenide: A Promising Thin-Film Material for Next Generation Solar Technology

    , Article Crystal Research and Technology ; Volume 56, Issue 7 , 2021 ; 02321300 (ISSN) Ali, N ; Zubair, M ; Khesro, A ; Ahmed, R ; Uddin, S ; Shahzad, N ; Alrobei, H ; Kalam, A ; Al-Sehemi, A. G ; Ul Haq, B ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Studies on copper zinc tin sulpher selenide (CZTSSe) thin-film material and its applications as a base material are intensively being researched since it is an earth-abundant, inexpensive, flexible, and interesting material for next-generation optoelectronic technologies. Apropos, this study explores and reports the synthesis of CZTSSe thin films and their key optoelectronics characteristics. The reported films are fabricated on a soda-lime glass substrate by using a physical vapor deposition technique, and then annealed from 250 to 450 °C. From the X-ray diffraction analysis, the structure of the as-deposited thin films is found to be amorphous in nature. Annealed thin films of CZTSSe... 

    A study on optoelectronic properties of copper zinc tin sulfur selenide: A promising thin-film material for next generation solar technology

    , Article Crystal Research and Technology ; Volume 56, Issue 7 , 2021 ; 02321300 (ISSN) Ali, N ; Zubair, M ; Khesro, A ; Ahmed, R ; Uddin, S ; Shahzad, N ; Alrobei, H ; Kalam, A ; Al Sehemi, A. G ; Ul Haq, B ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Studies on copper zinc tin sulpher selenide (CZTSSe) thin-film material and its applications as a base material are intensively being researched since it is an earth-abundant, inexpensive, flexible, and interesting material for next-generation optoelectronic technologies. Apropos, this study explores and reports the synthesis of CZTSSe thin films and their key optoelectronics characteristics. The reported films are fabricated on a soda-lime glass substrate by using a physical vapor deposition technique, and then annealed from 250 to 450 °C. From the X-ray diffraction analysis, the structure of the as-deposited thin films is found to be amorphous in nature. Annealed thin films of CZTSSe... 

    Role of BCP layer on nonlinear properties of perovskite solar cell

    , Article Solar Energy ; Volume 213 , 2021 , Pages 383-391 ; 0038092X (ISSN) Asgary, S ; Milani Moghaddam, H ; Bahari, A ; Mohammadpour, R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Organic-inorganic hybrid halide perovskite materials have been most attractive for wide range of optoelectronic applications. Investigating the photo-response in these devices will be very useful to understanding cell performance in different conditions and applications. For understanding non-linearity photo-response we use the Bathocuproine (BCP) as blocking layer in two interfaces of inverted perovskite solar cell (FTO/NiO/BCP/Perovskite/PCBM/Au and FTO/NiO/Perovskite/PCBM/BCP/Au). Employing thick BCP layer (≈15 nm) caused s-shaped JV curve due to charge accumulation at interfaces. The nonlinearity effect was also explored for devices with s-shaped JV and established that device parameters... 

    A single layer deposition of Li-doped mesoporous TiO2beads for low-cost and efficient dye-sensitized solar cells

    , Article New Journal of Chemistry ; Volume 45, Issue 5 , 2021 , Pages 2470-2477 ; 11440546 (ISSN) Golvari, P ; Nouri, E ; Mohsenzadegan, N ; Mohammadi, M. R ; Martinez Chapa, S. O ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Herein, we report a new strategy for improving the efficiency and reducing the fabrication cost of dye-sensitized solar cells (DSCs) by elimination of the three- or four-fold layer deposition of TiO2. This is performed by replacing a single layer deposition of mesoporous TiO2 beads, with sub-micrometer size, high surface area and tunable pore size, synthesized by a combination of sol-gel and solvothermal methods. Furthermore, superior electronic properties gained by a reduction in electronic trap states are achieved through doping of pristine TiO2 beads with lithium. The beads have a spherical shape with monodispersed texture consisting of anatase-TiO2 nanocrystals and ultra-fine pores. The... 

    Electrical and optical characterization of sprayed In2S3 thin films as an electron transporting layer in high efficient perovskite solar cells

    , Article Solar Energy ; Volume 215 , 2021 , Pages 356-366 ; 0038092X (ISSN) Hashemi, M ; Minbashi, M ; Ghorashi, S. M. B ; Ghobadi, A ; Ehsani, M. H ; Heidariramsheh, M ; Hajjiah, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study represents the investigation of In2S3 thin films, which have been deposited with different Indium salts (Chloride, Acetate, and Nitrate) using the Chemical Spray Pyrolysis (CSP) method. The Mott-Schottky analysis has been used in case of studying the electrical properties of films such as conduction and valence band, carrier densities, Fermi level (Efn), flat band potential, and semiconductor type. In the next step, the Rb1MAFA perovskite solar cell has been simulated, and the results have been validated by the experimental data (with the least parameters for fitting). Finally, In2S3 layers have been inserted on the SnO2 layer to decrease the recombination rate and enhance the... 

    Optoelectrical and structural characterization of Cu2SnS3 thin films grown via spray pyrolysis using stable molecular ink

    , Article Solar Energy ; Volume 224 , 2021 , Pages 218-229 ; 0038092X (ISSN) Heidariramsheh, M ; Gharabeiki, S ; Mahdavi, S. M ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This work focused on the spray pyrolysis deposition of Cu2SnS3 (CTS) thin films using a stable basic solution. The effect of the most important parameters including the substrate temperature and copper concentration on the structural, optical and electrical properties of as-deposited thin films was investigated. Qualified thin films with suitable microstructure and composition could be deposited at 370℃. XRD and Raman analysis while confirming the pure CTS film formation, show that as the Cu/Sn decreases, the crystal structure layers are changed from the tetragonal phase to the cubic phase mixed with Sn-rich phases. The optical study shows its band gap between 1.08 and 1.2 eV for different... 

    Evaluating Cu2SnS3nanoparticle layers as hole-transporting materials in perovskite solar cells

    , Article ACS Applied Energy Materials ; Volume 4, Issue 6 , 2021 , Pages 5560-5573 ; 25740962 (ISSN) Heidariramsheh, M ; Mirhosseini, M ; Abdizadeh, K ; Mahdavi, S. M ; Taghavinia, N ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    We investigate the use of simple nontoxic Cu2SnS3 (CTS) nanoparticles (NPs) as low-cost dopant-free hole-transport materials (HTMs) a substitute for spiro-OMeTAD in an n-i-p mesoscopic architecture of perovskite solar cells (PSCs). Besides, this work confirms the critical role of the crystalline phase of CTS NPs on the performance of the device. Using a facile one-pot heating-up procedure, pure zincblende and wurtzite structures of CTS NPs were obtained by sulfur element and thiourea as the sulfur source, respectively, and were dispersed in chloroform to make very stable nonpolar ink that is compatible with the perovskite. Nanoparticles with the wurtzite crystal phase showed much better...