Loading...
Search for: solar-cells
0.018 seconds
Total 369 records

    Gel combustion synthesis of fluorine-doped tin oxide and its characteristics: applying D-optimal factorial design of experiment

    , Article Bulletin of Materials Science ; Volume 42, Issue 3 , 2019 ; 02504707 (ISSN) Malek, S ; Baghshahi, S ; Sarraf Mamoory, R ; Nemati, A ; Sharif University of Technology
    Indian Academy of Sciences  2019
    Abstract
    Fluorine-doped tin oxide (FTO) nano-powders were synthesized by a gel combustion method. To analyse the effect of processing factors and their interactions and to achieve an equation for nano-powder particle size in terms of code factors, D-optimal factorial design was used. Stannous chloride penta-hydride, ammonium fluoride and citric acid were used to synthesize the FTO nano-powders. The structure, morphology and composition of the synthesized powders were characterized by X-ray diffraction, field emission scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The results revealed the formation of homogenous FTO nano-powders with an average particle size of 20 nm... 

    Improved efficiency in front-side illuminated dye sensitized solar cells based on free-standing one-dimensional TiO2 nanotube array electrodes

    , Article Solar Energy ; Volume 184 , 2019 , Pages 115-126 ; 0038092X (ISSN) Peighambardoust, N. S ; Khameneh Asl, S ; Mohammadpour, R ; Khameneh Asl, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Although morphological disorder of nanotube structure is further down than the nanoparticular electrode, its density of traps are the hindering effects in the charge transport. In this study, crack-free TiO2 nanotube membranes, which obtained through a re-anodizing process, are fixed on transparent fluorine–tin-oxide glass by applying a few drops of Titanium Isopropoxide without needing the TiO2 powder paste. Front-side illuminated dye sensitized solar cells fabricated by undoped, N-doped and blue TiO2 nanotube membranes are investigated. The electrical characteristics of TiO2 nanotube based dye sensitized solar cells are followed by theoretical analysis using simple one-diode model.... 

    Study of hole-transporter-free perovskite solar cells based on fully printable components

    , Article Micromachines ; Volume 10, Issue 4 , 2019 ; 2072666X (ISSN) Raminafshar, C ; Raptis, D ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Hole-transporter-free perovskite solar cells carrying a carbon back contact electrode provide the possibility of making full printable low cost and stable devices, even though their efficiency is substantially lower than those made in the standard configuration. The present work searched for simple and easy routes for constructing such devices, demonstrating that organic components do enhance device efficiency but only to a level that is not worth the trouble nor the cost. Devices based on a triple mesoporous layer of titania/zirconia/carbon with perovskite infiltration gave an efficiency of 10.7%. After 180 days of storing under ambient conditions, a small loss of efficiency has been... 

    Modeling of J sc and V oc versus the grain size in CdTe, CZTS and Perovskite thin film solar cells

    , Article Superlattices and Microstructures ; Volume 128 , 2019 , Pages 421-427 ; 07496036 (ISSN) Nazem, H ; Pourasiab Dizaj, H ; Gorji, N. E ; Sharif University of Technology
    Academic Press  2019
    Abstract
    A modeling approach is presented for the first time to model the dependence of short-circuit current density (J sc ) and open-circuit voltage (V oc ) on the grain size g in three thin film solar cells including the emerging perovskites. The variation of J sc and V oc with the grain size (g) of three different solar cells with CdTe, CZTS and perovskite absorber layers are modelled and fitted with the experimental dataset collected from relevant literature. The experimental literature suggested that the grain size of absorber layers in solar cells is controlled during the deposition process by adjusting the growth rate, temperature and ambient. The model has been successfully applied to the... 

    Engineering of perovskite materials based on formamidinium and cesium hybridization for high-efficiency solar cells

    , Article Chemistry of Materials ; Volume 31, Issue 5 , 2019 , Pages 1620-1627 ; 08974756 (ISSN) Prochowicz, D ; Runjhun, R ; Tavakoli, M. M ; Yadav, P ; Saski, M ; Alanazi, A. Q ; Kubicki, D. J ; Kaszkur, Z ; Zakeeruddin, S. M ; Lewiński, J ; Grätzel, M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Engineering the chemical composition of inorganic-organic hybrid perovskite materials is an effective strategy to boost the performance and operational stability of perovskite solar cells (PSCs). Among the diverse family of ABX3 perovskites, methylammonium-free mixed A-site cation CsxFA1-xPbI3 perovskites appear as attractive light-absorber materials because of their optimum band gap, superior optoelectronic property, and good thermal stability. Here, we develop a simple and very effective one-step solution method for the preparation of high-quality (Cs)x(FA)1-xPbI3 perovskite films upon the addition of excess CsCl to the FAPbI3 precursor solution. It is found that the addition of CsCl as a... 

    Moisture stability in nanostructured perovskite solar cells

    , Article Materials Letters ; Volume 237 , 2019 , Pages 356-360 ; 0167577X (ISSN) Malekshahi Byranvand, M ; Nemati Kharat, A ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Perovskite solar cells (PSCs) have attracted significant attention due to their excellent efficiency reaching 22.1% in just the past few years. Despite their high efficiency, the limited long-term stability of PSCs has to be overcome. Moisture environments has been recognized as a main degradation pathway of perovskite materials. This review summarizes recent studies about relationship of the stability of PSCs with moisture environment. We also discuss the current standard strategies for enhancing the stability of PSCs by modifying the properties of either the perovskite material itself or its interfaces  

    Investigation on gel polymer electrolyte-based dye-sensitized solar cells using carbon nanotube

    , Article Ionics ; Volume 25, Issue 1 , 2019 , Pages 319-325 ; 09477047 (ISSN) Sakali, S. M ; Khanmirzaei, M. H ; Lu, S. C ; Ramesh, S ; Ramesh, K ; Sharif University of Technology
    Institute for Ionics  2019
    Abstract
    A new poly (acrylonitrile) (PAN)-based gel polymer electrolyte (GPE) is fabricated to study the effect of carbon nanotube (CNT) on dye-sensitized solar cell (DSSC) efficiency. The GPEs are examined using electrochemical impedance spectroscopy (EIS) to analyze ionic conductivity. A maximum of 4.45 mS cm −1 ionic conductivity is achieved at room temperature with incorporation of 11 wt.% CNT. Performance of DSSC is examined with a solar simulator, and the highest energy conversion efficiency of 8.87% is achieved with the addition of 11 wt.% CNT. All GPE samples are found to follow Arrhenius model with temperature-dependent ionic conductivity testing. Structural properties are also characterized... 

    Multilayer evaporation of MAFAPbI3-xClx for the fabrication of efficient and large-scale device perovskite solar cells

    , Article Journal of Physics D: Applied Physics ; Volume 52, Issue 3 , 2019 ; 00223727 (ISSN) Tavakoli, M. M ; Yadav, P ; Prochowicz, D ; Tavakoli, R ; Saliba, M ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    FAPbI3 perovskites are excellent candidates for fabrication of perovskite solar cells (PSCs) with high efficiency and stability. However, these perovskites exhibit phase instability problem at room temperature. In this work, to address this challenge we use methylammonium chloride (MACl) as an additive and employed a layer-by-layer thermal evaporation technique to fabricate high-quality perovskite films on a large scale of 25 cm2. The optimized perovskite films show high crystallinity with large grains in the μm-range and reveals phase stability due to the presence of MACl after the annealing process. Finally, we achieved PSCs with 17.7% and 15.9% for active areas of 0.1 cm2 and 0.8 cm2,... 

    Surfactant-free stable SnS2 nanoparticles dispersion for deposition of device-quality films

    , Article Thin Solid Films ; Volume 669 , 2019 , Pages 269-274 ; 00406090 (ISSN) Haghighi, M ; Tajabadi, F ; Mahdavi, S. M ; Mohammadpour, R ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Tin sulfide (SnS2) has recently attracted considerable attention due to its layered structure that may form two dimensional morphologies. It is an n-type semiconductor with band gap and electron affinity similar to CdS and In2S3; therefore can be regarded as an alternative for these materials in thin film solar cells. Here, we synthesis of SnS2 nanoparticles with different morphology in different ratio of water-ethanol mixed solution by solvothermal method, and observe that more ethanol leads to large sheet like morphologies, while water based synthesis results in very small nanosheets. A challenge in wet deposition of device-quality thin films of SnS2 is the requirement for highly dispersed... 

    Fabrication of perovskite solar cells based on vacuum-assisted linear meniscus printing of MAPbI3

    , Article Solar Energy Materials and Solar Cells ; Volume 191 , 2019 , Pages 148-156 ; 09270248 (ISSN) Parvazian, E ; Abdollah zadeh, A ; Akbari, H. R ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Scale-up deposition methods in perovskite solar cell research, are mostly used under humidity environment outside the glove-box. Also, the as-printed absorbing layer before the post-annealing process is always wet. Thus, controlling the morphology and crystallization of perovskite thin-films in up-scaled deposition systems is difficult and strongly investigated by the researchers. In this work, we introduce an anti-solvent-free meniscus printing method in which, the absorbing perovskite film with optimal performance is achieved. To this end, we check the printing parameters to get to the optimized film characteristics. Also, a vacuum chamber (<100 Pa) is used for 30 s to remove the solvent... 

    Resolving a critical instability in perovskite solar cells by designing a scalable and printable carbon based electrode-interface architecture

    , Article Advanced Energy Materials ; Volume 8, Issue 31 , 2018 ; 16146832 (ISSN) Mashhoun, S ; Hou, Y ; Chen, H ; Tajabadi, F ; Taghavinia, N ; Egelhaaf, H. J ; Brabec, C. J ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Thin-film solar cells based on hybrid organo-halide lead perovskites achieve over 22% power conversion efficiency (PCE). A photovoltaic technology at such high performance is no longer limited by efficiency. Instead, lifetime and reliability become the decisive criteria for commercialization. This requires a standardized and scalable architecture which does fulfill all requirements for larger area solution processing. One of the most highly demanded technologies is a low temperature and printable conductive ink to substitute evaporated metal electrodes for the top contact. Importantly, that electrode technology must have higher environmental stability than, for instance, an evaporated silver... 

    Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability

    , Article Advanced Energy Materials ; Volume 8, Issue 23 , 2018 ; 16146832 (ISSN) Tavakoli, M. M ; Yadav, P ; Tavakoli, R ; Kong, J ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high-performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a-SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double-layer structure of TiO2 compact layer (c-TiO2) and a-SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a-SnO2/c-TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c-TiO2 based device.... 

    Elucidation of charge recombination and accumulation mechanism in mixed perovskite solar cells

    , Article Journal of Physical Chemistry C ; Volume 122, Issue 27 , 2018 , Pages 15149-15154 ; 19327447 (ISSN) Yadav, P ; Turren Cruz, S. H ; Prochowicz, D ; Tavakoli, M. M ; Pandey, K ; Zakeeruddin, S. M ; Gratzel, M ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Organic-inorganic perovskite solar cells (PSCs) have gained considerable attention owing to their impressive photovoltaic properties and simple device manufacturing. In general, PSC employs a perovskite absorber material sandwiched between an electron and hole selective transport layer optimized with respect to optimal band alignment, efficient charge collection, and low interfacial recombination. The interfaces between the perovskite absorber and respective selective contacts play a crucial role in determining photovoltaic performance and stability of PSCs. However, a fundamental understanding is lacking, and there is poor understanding in controlling the physical processes at the... 

    Greener, nonhalogenated solvent systems for highly efficient Perovskite solar cells

    , Article Advanced Energy Materials ; Volume 8, Issue 21 , 25 July , 2018 ; 16146832 (ISSN) Yavari, M ; Mazloum Ardakani, M ; Gholipour, S ; Tavakoli, M. M ; Turren Cruz, S. H ; Taghavinia, N ; Gratzel, M ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    All current highest efficiency perovskite solar cells (PSCs) use highly toxic, halogenated solvents, such as chlorobenzene (CB) or toluene (TLN), in an antisolvent step or as solvent for the hole transporter material (HTM). A more environmentally friendly antisolvent is highly desirable for decreasing chronic health risk. Here, the efficacy of anisole (ANS), as a greener antisolvent for highest efficiency PSCs, is investigated. The fabrication inside and outside of the glovebox showing high power conversion efficiencies of 19.9% and 15.5%, respectively. Importantly, a fully nonhalogenated solvent system is demonstrated where ANS is used as both the antisolvent and the solvent for the HTM.... 

    Analytical study of electro-elastic fields in quantum nanostructure solar cells: the inter-nanostructure couplings and geometrical effects

    , Article Acta Mechanica ; Volume 229, Issue 7 , 2018 , Pages 3089-3106 ; 00015970 (ISSN) Rashidinejad, E ; Naderi, A. A ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    Recent investigations on multifunctional piezoelectric semiconductors have shown their excellent potential as photovoltaic components in high-efficiency third-generation quantum nanostructure (QNS) solar cells. The current work is devoted to studying the electro-elastic behavior of high-density QNS photovoltaic semiconductors within which initial mismatch strains of arrays of quantum dots (QDs) or quantum wires (QWRs) induce coupled electro-mechanical fields. The inter-nanostructure couplings which are of great importance in high-density QNS arrays are incorporated in the presented analytical framework. In practice, QNSs with different geometries such as spherical, cuboidal, or pyramidal QDs... 

    Carbon based perovskite solar cells constructed by screen-printed components

    , Article Electrochimica Acta ; Volume 276 , 2018 , Pages 261-267 ; 00134686 (ISSN) Raminafshar, C ; Dracopoulos, V ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Carbon based perovskite solar cells have been constructed by screen-printing three subsequent mesoporous layers of Titania, Zirconia and Carbon without a hole transporting layer and by infiltration of perovskite liquid precursor through the layers. Cell efficiency was optimized by varying the thickness of the three layers and the composition of the inks employed for screen printing. Electrochemical impedance spectroscopy was employed as a guide in the search for layer thickness optimization. All cell construction and testing was carried out under ambient conditions of 20–30% humidity. The cells were not encapsulated. The best cell gave an efficiency of 10.7%. All cells demonstrated a... 

    Modeling the time-dependent characteristics of perovskite solar cells

    , Article Solar Energy ; Volume 170 , 2018 , Pages 969-973 ; 0038092X (ISSN) Moeini, I ; Ahmadpour, M ; Mosavi, A ; Alharbi, N ; Gorji, N. E ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    We proposed two different time-dependent modeling approaches for variation of device characteristics of perovskite solar cells under stress conditions. The first approach follows Sah-Noyce-Shockley (SNS) model based on Shockley–Read–Hall recombination/generation across the depletion width of pn junction and the second approach is based on thermionic emission model for Schottky diodes. The connecting point of these approaches to time variation is the time-dependent defect generation in depletion width (W) of the junction. We have fitted the two models with experimental data reported in the literature to perovskite solar cell and found out that each model has a superior explanation for... 

    Blue and red wavelength resolved impedance response of efficient perovskite solar cells

    , Article Sustainable Energy and Fuels ; Volume 2, Issue 11 , 2018 , Pages 2407-2411 ; 23984902 (ISSN) Prochowicz, D ; Tavakoli, M. M ; Turren Cruz, S. H ; Pandey, K ; Saliba, M ; Yadav, P ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    The identification of recombination centers in perovskite solar cells is highly challenging. Here, we demonstrate the red and blue excitation wavelength resolved impedance response in state-of-the-art perovskite solar cells (PSCs) providing insights into charge recombination and ion accumulation. To get insight into the interfacial electronic characteristics, we fabricated PSCs with a planar architecture containing state-of-the-art triple-cation perovskite materials as absorber layers. The capacitance-frequency response under various blue and red illumination conditions were used to investigate interfacial charge accumulations and found that under high energy photons irradiation maximum... 

    Improving the stability of inverted perovskite solar cells under ambient conditions with graphene-based inorganic charge transporting layers

    , Article Carbon ; Volume 126 , 2018 , Pages 208-214 ; 00086223 (ISSN) Nouri, E ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Inverted organometal halide perovskite solar cells of p-i-n architecture allow for the employment of inorganic components that ensure longer time stability than organic charge transporters. This has been demonstrated in the present work where devices were made by employing NiO/GO and Li-modified GO/TiOx as hole and electron transporters, respectively, in comparison with popular organic components, such as PEDOT:PSS and PCBM. Cells made in the FTO/PEDOT:PSS/Perovskite/PCBM/Al composition were 25% more efficient than cells made in the FTO/NiO/GO/Perovskite/GO-Li/TiOx/Al composition but the latter was markedly more stable than the former. Emphasis has been presently given to the... 

    Monolithic dye sensitized solar cell with metal foil counter electrode

    , Article Organic Electronics ; Volume 57 , June , 2018 , Pages 194-200 ; 15661199 (ISSN) Behrouznejad, F ; Taghavinia, N ; Ghazyani, N ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Monolithic dye-sensitized solar cells are conventionally fabricated using carbon composite layer as the counter electrode. In the current research, the brittle carbon composite layer is replaced with a metal foil, aiming to decrease the device series resistance and using less catalyst material in counter electrode. This metallic structure has also an advantage of mechanical strength and decreases the fabrication complexity. The counter electrode is prepared by electrodepositing Cr film followed by electrodepositing Pt nanoparticles on a metal foil. As the porous spacer layer, different composite layers of SiO2, TiO2, and Al2O3 are investigated and the best results are obtained for TiO2...