Loading...
Search for: solar-cells
0.009 seconds
Total 369 records

    Techno-economic assessment of a novel power-to-liquid system for synthesis of formic acid and ammonia, based on CO2 electroreduction and alkaline water electrolysis cells

    , Article Renewable Energy ; Volume 187 , 2022 , Pages 1224-1240 ; 09601481 (ISSN) Bahnamiri, F. K ; Khalili, M ; Pakzad, P ; Mehrpooya, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The power-to-liquid concept is a promising strategy to convert the power plants' flue gas to value-added liquid fuels using renewable energy. This technology could potentially reduce global greenhouse gases emissions and mitigate the environmental problems associated with the fossil fuels industry. In this regard, the main objective of the present study is to propose a novel power-to-liquid plant for the synthesis of formic acid and ammonia from power plants' flue gas, emphasizing the role of electrochemical technologies and renewable energy. The system's basis is developed by the integration of CO2 electroreduction cell, alkaline water electrolysis cell, and photovoltaic panel technologies.... 

    Optimization of selenization process to remove Ga-induced pin-holes in CIGS thin films

    , Article Solar Energy ; Volume 236 , 2022 , Pages 175-181 ; 0038092X (ISSN) Khosroshahi, R ; Dehghani, M ; Tehrani, N. A ; Taghavinia, N ; Bagherzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In thin-film solar cells, deposition of pinhole and the crack-free absorber layer, with the right chemical stoichiometry is highly important for high-performance solar cell devices. In solution-based CIGS solar cell technology, a nanoparticle ink approach provides phase stability of the final chalcogenide absorber layer. However, the sintering of small nanoparticles to form large grains with reduced grain boundaries is an important challenge in the fabrication process. This is usually realized by annealing in the Se atmosphere, i.e. selenization process. However, the presence of Ga in CIGS films leads to pinholes after selenization. In this study, the synthesis and deposition of high-quality... 

    Effect of Zn/Sn ratio on perovskite solar cell performance applying off-stoichiometric Cu2ZnSnS4/Carbon hole-collecting electrodes

    , Article ACS Applied Materials and Interfaces ; Volume 14, Issue 15 , 2022 , Pages 17296-17311 ; 19448244 (ISSN) Heidariramsheh, M ; Forouzandeh, M ; Taghavinia, N ; Mahdavi, S. M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Low-cost inorganic hole-transporting materials (HTMs) accompanied by a printable carbon electrode is an efficient approach to address the limitation of material cost of perovskite solar cells (PSCs) and get this technology closer to commercialization. The present work is focused on optimizing the Zn/Sn ratio of Cu2ZnSnS4/carbon hole collectors in n-i-p structured PSCs, where CuInS2/carbon is applied as the reference hole collector. This composition regulation is a solution to address the challenge of composition-related defects of the Cu2ZnSnS4 (CZTS) material. The Zn/Sn ratio was tuned by the initial proportion of the zinc precursor during the nanoparticle (NP) synthesis using a heating-up... 

    4-tert-butyl pyridine additive for moisture-resistant wide bandgap perovskite solar cells

    , Article Optical Materials ; Volume 123 , 2022 ; 09253467 (ISSN) Rafiei Rad, R ; Azizollah Ganji, B ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Perovskite solar cells fabrication process need inert or low humidity atmospheres. While highly efficient perovskite solar cells to overcome the photovoltaic marketing should be achieved stability at any environmental conditions. At high humidity, water molecules react with the perovskite layer and increase the degradation rate, leading to a drastic decrease in device performance and perovskite crystallinity. In this work, the effect of environmental humidity on photophysical parameters of wide bandgap, (WBG) perovskite layer and solar cells stability is systematically investigated and tBP is proposed as an additive in perovskite precursor to increase the moisture resistance and improve the... 

    Pre-deposited alkali (Li, Na, K) chlorides layer for effective doping of CuInSSe thin films as absorber layer in solar cells

    , Article Solar Energy ; Volume 231 , 2022 , Pages 694-704 ; 0038092X (ISSN) Hashemi, M ; Bagher Ghorashi, S. M ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    We introduce an effective method for copper indium sulfide selenide (CISSe) doping with different alkali metals (Li, Na and K) based on a pre-deposited alkali chloride layer. A simple and fast spray method is used for pre-deposition of alkali chloride layer (LiCl, NaCl, KCl) on substrate surface before spray pyrolysis deposition of copper indium disulfide CuInS2 (CIS) films followed by selenization. The different properties of alkali-doped CISSe films by the alkali chloride pre-deposition (ACPD) method were compared to the post-deposition treatment (PDT) method. Based on FESEM images, a highly compact film with large grains can be obtained for CISSe films doped with K(∼0.72 μm) and Na (∼0.56... 

    Cu2ZnSnS4 as a hole-transport layer in triple-cation perovskite solar cells: Current density versus layer thickness

    , Article Ceramics International ; Volume 48, Issue 1 , 2022 , Pages 711-719 ; 02728842 (ISSN) Rastegar Moghadamgohari, Z ; Heidariramsheh, M ; Taghavinia, N ; Mohammadpour, R ; Rasuli, R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Cu2ZnSnS4 (CZTS) is a good candidate for cost-effective perovskite solar cells (PSCs) due to its direct bandgap with a value of 1.4–1.5 eV. In this study, we investigate CZTS ink as an inorganic hole-transport-layer (HTL) in CsMAFAPbIBr mixed halide PSCs. We study the cell efficiency and hole extraction from the perovskite layer for different thicknesses of HTL. The optimized device exhibits better hole selectivity, and the best efficiency of the device (12.84%) is achieved for the CZTS layer with a thickness of 159 nm. The prepared samples were also tested by open-circuit voltage decay analysis and electrochemical impedance spectroscopies. Results show that the optimized device effectively... 

    Attitude and deformation coupled estimation of flexible satellite using low-cost sensors

    , Article Advances in Space Research ; Volume 69, Issue 1 , 2022 , Pages 677-689 ; 02731177 (ISSN) Ghani, M ; Assadian, N ; Varatharajoo, R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Solar panel flexibility plays an important role in the attitude control of satellites. Therefore, traditionally the deformations of flexible solar panels are measured with a series of sensors along the panels itself. This paper presents a novel maiden attempt to simultaneously estimate the attitude and deformation of a flexible satellite using only 2 low-cost attitude sensors namely the sun sensor and magnetometer measurements. The flexible satellite is considered as a central rigid body with two attached flexible panels in order to derive the governing dynamic equations based on the Lagrange's equation. Both Extended Kalman filter (EKF) and Unscented Kalman Filter (UKF) are employed for the... 

    Improving the performance of planar perovskite solar cell using NH4Cl treatment of SnO2 as electron transport layer

    , Article Surfaces and Interfaces ; Volume 28 , 2022 ; 24680230 (ISSN) Keshtmand, R ; Zamani Meymian, M. R ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Here in this research, a modified interface between the electron transport layer (ETL) and the perovskite layer in a perovskite solar cell (PSC) is provided by adding the ammonium chloride (NH4Cl) to the tin oxide (SnO2) as the modified ETL of a planar structure as follows: fluorine-doped tin oxide (FTO)/NH4Cl-SnO2/Mixed cation perovskite/Copper indium disulfide (CIS)/Gold (Au). The effects of NH4Cl on ETL are investigated in different amounts from 0.003 to 0.02 M and the best results were obtained in the amount of 0.013 M. The best NH4Cl-SnO2 ETL could increase the power conversion efficiency (PCE) of fabricated planar PSC by 16.79% with open-circuit voltage (Voc) of 1.15 V and negligible... 

    Engineering of CIGS nanoparticle inks for colloidal stability, uniform film formation and application as HTL for perovskite solar cells

    , Article Journal of Industrial and Engineering Chemistry ; Volume 106 , 2022 , Pages 253-261 ; 1226086X (ISSN) Khosroshahi, R ; Tehrani, N. A ; Forouzandeh, M ; Behrouznejad, F ; Taghavinia, N ; Bagherzadeh, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2022
    Abstract
    In this work, synthesis of CuIn0.75Ga0.25S2 (CIGS) nanoparticles, the formation of stable dispersion, deposition of high-quality films and, fabrication of thin-film Perovskite solar cells are reported. The stability of nanoparticle ink is crucial in the formation of device-quality films. The chalcogenide-based materials are widely used in thin-film solar cells; in particular, Cu(In,Ga)S2 are used as an absorber and hole transporting layer. In the present study, the nanoparticles of about 20 nm size and bandgap of 1.5 eV are synthesized using a heat-up method. A variety of solvents are used as dispersing media and the stability of the inks is evaluated by precise optical monitoring. We...