Loading...
Search for: targeted-drug-delivery
0.009 seconds
Total 103 records

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S.H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S. H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    2D MXene nanocomposites: electrochemical and biomedical applications

    , Article Environmental Science: Nano ; Volume 9, Issue 11 , 2022 , Pages 4038-4068 ; 20518153 (ISSN) Ramezani Farani, M ; Nourmohammadi Khiarak, B ; Tao, R ; Wang, Z ; Ahmadi, S ; Hassanpour, M ; Rabiee, M ; Saeb, M. R ; Lima, E. C ; Rabiee, N ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    In recent years, key questions about the interaction of 2D MXene nanomaterials in electrochemical and biomedical applications have been raised. Most research has focused on clarifying the exclusive properties of the materials; however, only limited reports have described the biomedical applications of 2D nanomaterials. 2D MXenes are monolayer atomic nanosheets resulting from MAX phase ceramics. The hydrophilic properties, metallic conductivity, stability, and exclusive physiochemical performances make them promising materials for electrochemical and biomedical applications, including CO2 reduction, H2 evolution, energy conversion and storage, supercapacitors, stimuli-responsive drug delivery...