Loading...
Search for: water-content
0.012 seconds
Total 37 records

    Optimisation of Ru-promoted Ir-catalysed methanol carbonylation utilising response surface methodology

    , Article Applied Catalysis A: General ; Volume 394, Issue 1-2 , February , 2011 , Pages 166-175 ; 0926860X (ISSN) Hosseinpour, V ; Kazemeini, M ; Mohammadrezaee, A ; Sharif University of Technology
    2011
    Abstract
    In this study, central composite design (CCD) at five levels (-1.63, -1, 0, +1, +1.63) combined with response surface methodology (RSM) have been applied to optimise methanol carbonylation using a ruthenium-promoted iridium catalyst in a homogenous phase. The effect of seven process variables, including temperature, pressure, iridium, ruthenium, methyl iodide, methyl acetate and water concentrations, as well as their binary interactions, were modelled. The determined R 2 values greater than 0.9 for the rate and methane formation data confirmed that the quadratic equation properly fitted the obtained experimental data. The optimum conditions for maximum rate and minimum methane formation were... 

    Optimization of parameters for synthesis of mfi nanoparticles by taguchi robust design

    , Article Chemical Engineering and Technology ; Volume 33, Issue 6 , 2010 , Pages 902-910 ; 09307516 (ISSN) Torkman, R ; Soltanieh, M ; Kazemian, H ; Sharif University of Technology
    2010
    Abstract
    MFI-type zeolite was successfully synthesized by hydrothermal crystallization of clear synthesis mixtures. A statistical experimental design method (the Taguchi method with an L8 orthogonal array) was implemented to optimize the experimental conditions for the preparation of MFI nanocrystals with respect to particle size and distribution as the desirable properties. In the Taguchi experimental design, crystallization temperature, water content, template/silica molar ratio, aluminum content, as well as the presence of alkaline cations were chosen as significant parameters affecting the properties. It was shown that water and aluminum content of the synthesis solution were the most important... 

    Comparison of using formaldehyde and carboxy methyl chitosan in preparation of Fe3O4 superparamagnetic nanoparticles-chitosan hydrogel network: Sorption behavior toward bovine serum albumin

    , Article Process Safety and Environmental Protection ; Volume 102 , 2016 , Pages 119-128 ; 09575820 (ISSN) Sadeghi, M ; Hanifpour, F ; Taheri, R ; Javadian, H ; Ghasemi, M ; Sharif University of Technology
    Institution of Chemical Engineers 
    Abstract
    A novel and cost effective method of bio-separation developed recently is magnetic separation technology. In this study, super paramagnetic Fe3O4 nanoparticles are used for separation of bovine serum albumin (BSA) protein from plasma/serum samples at optimized conditions. The synthesis of chitosan hydrogel networks by two variant approaches that involve (1) crosslinking of chitosan with formaldehyde and (2) formation of carboxy methyl chitosan mediated complex, was investigated and the percent of gelation, swelling ratio and equilibrium water content were calculated. The results revealed the formation of better quality hydrogel from the first approach. In step 1, to quantify the BSA... 

    Combination of water head control and axis translation techniques in new unsaturated cyclic simple shear tests

    , Article Soil Dynamics and Earthquake Engineering ; Volume 126 , 2019 ; 02677261 (ISSN) Ahmadinezhad, A ; Jafarzadeh, F ; Sadeghi, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A cyclic simple shear device was modified for testing coarse-grained soils at unsaturated conditions. A combined methodology of controlling suction for the practical range of coarse-grained soil water retention curves was adopted. Water head control method was used to accurately control suction within capillary and transition zones of such soils. The axis translation technique, on the other hand, was employed as a complementary approach to reach higher suction values within residual zone. In order to evaluate the performance of the new setup, independent cyclic tests were carried out at various initial suctions including all key points and zones along the primary drying path. The analyses of... 

    Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications

    , Article Polymer Reviews ; Volume 60, Issue 1 , 2020 , Pages 144-170 Eslahi, N ; Mahmoodi, A ; Mahmoudi, N ; Zandi, N ; Simchi, A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Bacterial cellulose (BC) is an extracellular natural polymer produced by many microorganisms and its properties could be tailored via specific fabrication methods and culture conditions. There is a growing interest in BC derived materials due to the main features of BC such as porous fibrous structure, high crystallinity, impressive physico-mechanical properties, and high water content. However, pristine BC lacks some features, limiting its practical use in varied applications. Thus, fabrication of BC composites has been attempted to overcome these constraints. This review article overviews most recent advance in the development of BC composites and their potential in biomedicine including... 

    Optimizing temperature and introducing new process arrangements for elevating clay's longevity based on the known poisons in the separation process of trace olefins from aromatics

    , Article Journal of Chemical Technology and Biotechnology ; Volume 97, Issue 4 , 2022 , Pages 973-983 ; 02682575 (ISSN) Rouhani, H ; Farhadi, F ; Akbari Kenari, M ; Ramakrishna, S ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    BACKGROUND: The clay treatment widely utilized to reduce unsaturated components in aromatic stream has a detrimental effect on catalyst lifetime. Due to the short lifetime of commercial clay, a huge number of studies have been carried out to address this problem over the last decade. This study aims to optimize the temperature for longer serviceability of clay by removal of unsaturated aliphatic components from aromatic streams through the adsorption and catalytic properties of clay. A novel process arrangement is introduced by scheduling the reuse of deactivated clay that is discarded after deactivation. RESULTS: Results showed that the suitable range of temperature for olefin removal is... 

    Experimental investigation of rheological and morphological properties of water in crude oil emulsions stabilized by a lipophilic surfactant

    , Article Journal of Dispersion Science and Technology ; Volume 34, Issue 3 , Feb , 2013 , Pages 356-368 ; 01932691 (ISSN) Sadeghi, M. B ; Ramazani, S. A. A ; Taghikhani, V ; Ghotbi, C ; Sharif University of Technology
    2013
    Abstract
    Rheological behavior of two crude oils and their surfactant-stabilized emulsions with initial droplet sizes ranging from 0.5 to 75 μm were investigated at various temperatures under steady and dynamic shear testing conditions. In order to evaluate the morphology and Stability of emulsions, microscopic analysis was carried out over three months and average diameter and size distribution of dispersed droplets were determined. The water content and surfactant concentration ranged from 10 to 60% vol/vol and 0.1 to 10% wt/vol, respectively. The results indicated that the rheological properties and the physical structure and stability of emulsions were significantly influenced by the water content... 

    The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition

    , Article Bioresource Technology ; Volume 193 , October , 2015 , Pages 90-96 ; 09608524 (ISSN) Abedini Najafabadi, H ; Vossoughi, M ; Pazuki, G ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this research, direct conversion of wet algal biomass into biodiesel using supercritical methanol was studied. In this process, microalgal lipids simultaneously was extracted and converted to biodiesel under high pressure and temperature conditions without using any catalyst. Several experiments have been performed to optimize the methanol amount and it has been revealed that the best performance was achieved by using methanol/wet biomass ratio of 8:1. The effect of using various co-solvents in increasing the efficiency of the supercritical process was investigated. It has been shown that hexane was the most effective co-solvent and its optimal ratio respect to wet biomass was 6:1. The... 

    Stereolithography 3D bioprinting method for fabrication of human corneal stroma equivalent

    , Article Annals of Biomedical Engineering ; Volume 48, Issue 7 , June , 2020 , Pages 1955-1970 Mahdavi, S. S ; Abdekhodaie, M. J ; Kumar, H ; Mashayekhan, S ; Baradaran Rafii, A ; Kim, K ; Sharif University of Technology
    Springer  2020
    Abstract
    Abstract: 3D bioprinting technology is a promising approach for corneal stromal tissue regeneration. In this study, gelatin methacrylate (GelMA) mixed with corneal stromal cells was used as a bioink. The visible light-based stereolithography (SLA) 3D bioprinting method was utilized to print the anatomically similar dome-shaped structure of the human corneal stroma. Two different concentrations of GelMA macromer (7.5 and 12.5%) were tested for corneal stroma bioprinting. Due to high macromer concentrations, 12.5% GelMA was stiffer than 7.5% GelMA, which made it easier to handle. In terms of water content and optical transmittance of the bioprinted scaffolds, we observed that scaffold with... 

    An improved Kalman filtering approach for the estimation of unsaturated flow parameters by assimilating photographic imaging data

    , Article Journal of Hydrology ; Volume 590 , 2020 Rajabi, M. M ; Belfort, B ; Lehmann, F ; Weill, S ; Ataie Ashtiani, B ; Fahs, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    As a non-invasive method, photographic imaging techniques offer some interesting potentials for characterization of soil moisture content in unsaturated porous media, enabling mapping at very fine resolutions in both space and time. Although less explored, the wealth of soil moisture data provided by photographic imaging is also appealing for the estimation of unsaturated soil hydraulic parameters through inverse modeling. However, imaging data have some unique characteristics, including high susceptibility to noise, which can negatively affect the parameter estimation process. In this study a sequential data assimilation approach is developed to simultaneously update soil moisture content... 

    Chemical durability of metallic copper nanoparticles in silica thin films synthesized by sol-gel

    , Article Journal of Physics D: Applied Physics ; Volume 41, Issue 23 , November , 2008 ; 00223727 (ISSN) Akhavan, O ; Sharif University of Technology
    2008
    Abstract
    In this study, chemical durability of metallic copper nanoparticles dispersed in sol-gel silica thin films was investigated by exposing the films to air after a reduction process. At first, heat treatment in air for 1 h produced silica films containing crystalline cupric oxide nanoparticles agglomerated on the film surface. Subsequently, reduction of the oxidized films in a reducing environment of N2-H2 for another 1 h at temperatures of 400, 500 and 600 °C resulted in the formation of crystalline metallic Cu nanoparticles diffused in the silica matrix. The time evolution of the surface plasmon resonance absorption peak of the reduced Cu nanoparticles was studied after the reduction... 

    The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane

    , Article Renewable Energy ; Volume 36, Issue 12 , December , 2011 , Pages 3319-3331 ; 09601481 (ISSN) Tavakoli, B ; Roshandel, R ; Sharif University of Technology
    2011
    Abstract
    Models play an important role in fuel cell design and development. One of the critical problems to overcome in the proton exchange membrane (PEM) fuel cells is the water management. In this work a steady state, two-dimensional, isothermal model in a single PEM fuel cell using individual computational fluid dynamics code was presented. Special attention was devoted to the water transport through the membrane which is assumed to be combined effect of diffusion, electro-osmotic drag and convection. The effect of current density variation distribution on the water content (λ) in membrane/electrode assembly (MEA) was determined. In this work the membrane heat conductivity is considered as a... 

    Diffuse emissions of particles from iron ore piles by wind erosion

    , Article Environmental Engineering Science ; Volume 28, Issue 5 , 2011 , Pages 333-339 ; 10928758 (ISSN) Afshar Mohajer, N ; Torkian, A ; Sharif University of Technology
    Abstract
    Industrial air pollution from point and nonpoint sources of steel complexes has drawn increasingly more public attention in the past decades. Previous research efforts have been more concentrated on point sources of particulate emissions from these complexes. However, wind-induced particulate emissions from iron ore storage piles not only result in ambient air pollution but also increase economic adverse effects to the industry by loss of process raw materials. Experiments were conducted to assess the impact of wind speed and humidity on particulate emission rates from iron ore storage piles. A wind-generating system and specific iron ore, experimental piles (L:W:H of 30:11.5:5 cm) were... 

    Effective factors in the treatment of kerosene-water emulsion by using UF membranes

    , Article Journal of Hazardous Materials ; Volume 161, Issue 2-3 , 2009 , Pages 1216-1224 ; 03043894 (ISSN) Rezvanpour, A ; Roostaazad, R ; Hesampour, M ; Nyström, M ; Ghotbi, C ; Sharif University of Technology
    2009
    Abstract
    The effects of different parameters including membrane type (regenerated cellulose and polysulphone), transmembrane pressure (TMP), the content of oil in the feed, the flow velocity of the feed and pH on the ultrafiltration of an emulsion of kerosene in water were studied. It was found that the important factors affecting ultrafiltration were, in order, membrane type, pressure and oil concentration. The greatest flux at the optimum conditions here of 3 bar, an oil content of 3% (v/v) and with membrane type C30F was predicted as 108 L/(m2 h) that was within the range of the confidence limit of the measured value of 106 L/(m2 h). The normalised FTIR results of the virgin cellulosic membranes... 

    Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation

    , Article Journal of Colloid and Interface Science ; Volume 336, Issue 1 , 2009 , Pages 117-124 ; 00219797 (ISSN) Akhavan, O ; Sharif University of Technology
    2009
    Abstract
    Photodegradation of Escherichia coli bacteria in presence of Ag-TiO2/Ag/a-TiO2 nanocomposite film with an effective storage of silver nanoparticles was investigated in the visible and the solar light irradiations. The nanocomposite film was synthesized by sol-gel deposition of 30 nm Ag-TiO2 layer on ∼200 nm anatase(a-)TiO2 film previously doped by silver nanoparticles. Both Ag/a-TiO2 and Ag-TiO2/Ag/a-TiO2 films were transparent with a SPR absorption band at 412 nm. Depth profile X-ray photoelectron spectroscopy showed metallic silver nanoparticles with diameter of 30 nm and fcc crystalline structure were self-accumulated on the film surface at depth of 5 nm of the TiO2 layer and also at the... 

    Magnetic, thermally stable, and superhydrophobic polyurethane sponge: A high efficient adsorbent for separation of the marine oil spill pollution

    , Article Chemosphere ; Volume 287 , 2022 ; 00456535 (ISSN) Habibi, N ; Pourjavadi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, we demonstrated a facile method for the fabrication of magnetic and superhydrophobic polyurethane sponge with water contact angle of 159° as an adsorbent for cleanup the marine oil spill pollution. For this aim, a polyurethane sponge was coated with carbon black (CB), hexagonal boron nitride (h-BN)@Fe3O4, and acrylic resin and then characterized by different techniques. Owing to the chemical and thermal stability of h-BN and CB, the modified sponge was stable under corrosive conditions (pH = 1–14 and salt solutions) and at different temperatures (−12 °C–105 °C). In addition to common oils and organic solvents, we also used the real spilled oils containing monoaromatics and... 

    Green products from herbal medicine wastes by subcritical water treatment

    , Article Journal of Hazardous Materials ; Volume 424 , 2022 ; 03043894 (ISSN) Jouyandeh, M ; Tavakoli, O ; Sarkhanpour, R ; Sajadi, S. M ; Zarrintaj, P ; Rabiee, N ; Akhavan, O ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792–30.0 MPa, varying the temperature (127–327 °C) and time (1–60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5...