Loading...
Search for: zinc-oxide
0.009 seconds
Total 192 records

    Synthesis, Characterization and Photocatalytic Application of ZnO/g- C3N4 Composite Nanorods Fabricated by Combined Sol Gel-Hydrothermal Methods

    , M.Sc. Thesis Sharif University of Technology Soltani, Mojtaba (Author) ; Moshfegh, Alireza (Supervisor)
    Abstract
    Because of the working conditions of semiconductors at ambient temperature and pressure, degradation of organic pollutants through semiconductors photocatalysis has attracted the interest of many researchers. Because of its large exciton binding energy,high chemical and physical stability,high electron and hole mobility, and low cost; zinc oxide, an n-type semiconductor with 3.2 eV direct band gap, is widely used in applications such as photocatalysts, solar cells, and light-emitting diodes. Among various morphologies of ZnO, 1D nanostructures such as nanowires and nanorods have recieved much attention due to their high surface to volume ratio. However, the application of ZnO as a... 

    Synthesis of Nanoparticles and Application of the Prepared Catalyst for Some Organic Reactions, Efficient Synthesis of New Thiophene Derivatives and Asymmetric Synthesis of Sulfonic Acid Derivatives

    , Ph.D. Dissertation Sharif University of Technology Saeidian, Hamdollah (Author) ; Matloubi Moghaddam, Firouz (Supervisor)
    Abstract
    ZnO nanopowder has been successfully synthesized by a microwave-assisted solution approach using Zn(CH3CO2)2.2H2O and NaOH. The results obtained from XRD, SEM and TEM show that the mean particle size is 30 nm. SEM and TEM micrographs of ZnO nanopowder also reveal that nanoparticles have spherical shape. A convenient one-pot multi-component reaction of aromatic aldehydes, enolizable ketones or β-keto esters and acetonitrile in the presence of acetyl chloride and 10 mol % ZnO nanoparticles for the synthesis of β-acetamido ketones/esters at room temperature is described. Catalytic activity of ZnO nanopowder for o-acylation of alcohol and phenol has also been investigated. On the other hand,... 

    , Ph.D. Dissertation Sharif University of Technology (Author) ; Aashuri, Hossein (Supervisor) ; Simchi, Abdolreza (Co-Advisor)
    Abstract
    We demonstrated efficient direct electron transfer from the enzyme glucose oxidase to vertically aligned gold nanorods with a diameter of ~160 nm and a length of ~2 μm that are covalently linkage to a 3-dimensional network of reduced graphene oxide nanosheets. The assembly can be prepared by a 2-step electrochemical procedure. This hybrid structure holds the enzyme in a favorable position while retaining its functionality that ultimately provides enhanced performance for enzymatic sensing of glucose without utilizing mediators. The nanorod assembly was applied to the voltammetric detection of glucose. Figures of merit include an electrochemical sensitivity of 12 µA⋅mM-1⋅cm-2 (obtained from... 

    Synthesis, Characterization and Photocatalytic Application of Sol-gel Derived ZnO@CdS Coreshell Nanorods

    , M.Sc. Thesis Sharif University of Technology Zirak, Mohammad (Author) ; Moshfegh, Alireza (Supervisor)
    Abstract
    Synthesis, characterization and photocatalytic applications of core-shell like ZnO@CdS nanorods have been studied in this research. The synthesis of core-shell like ZnO@CdS nanorods was carried out in three different steps. At first, ZnO seed layer was formed on glass substrate via sol-gel process under optimum conditions using absolute ethanol solution containing zinc acetate and a stabilizer ( either Monoethanolamine (MEA) or diethanolamine (DEA)). When MEA used as stabilizer, the optimum concentration of sol was found 0.2 M, while increasing the sol concentration caused the seed layer to be grown in a string-like structure. The RMS surface roughness of seed layer prepared by 0.2 M sol... 

    The Photocatalytic and Photoluminescence Properties of Quasi Core-shell ZnO-graphene Oxide Nanoparticles

    , Ph.D. Dissertation Sharif University of Technology Pourseyed Haghshenas, Siamak (Author) ; Nemati, Ali (Co-Supervisor) ; Simchi, Abdollreza (Co-Supervisor) ; Kim, Choong-Un (Co-Supervisor)
    Abstract
    In this report, a combination of in-situ chemical synthesis and electrolysis methods was applied for the preparation of zinc oxide/graphene quasi core-shell nanoparticles. Pure zinc oxide was also prepared using the same method at different temperatures. The degree of 100 ◦C was selected for synthesizing of ZnO-GO quasi core-shell (zinc oxide as a core and few layer of graphene oxide as a shell). The particle size was 15±2 nm in all samples. In both processes, oxygen was the main reason for the connection between the core and the shell. Unlike chemical process that has all kind of functions in electrolysis process, one kind of function was produced and confirmed by FTIR. XRD patterns also... 

    Synthesis, Characterization and Photoelectrochemical Application of ZnO Nanorods Sensitized by Graphene

    , M.Sc. Thesis Sharif University of Technology Eshghi, Behnam (Author) ; Moshfegh, Alireza (Supervisor) ; Naseri, Naeimeh (Co-Supervisor)
    Abstract
    According to the growth in the world population and the decrease in fossil fuels resources and also according to the pollution caused by these unrenewable resources, using hydrogen as an alternative energy resource seems to be unavoidable. In the past decades, semi-conductor metal oxides were being used widely in the energy domain of study, due to their appropriate band gap in the ultra-violet and visible spectra. Among these metal oxides, ZnO has been under special attention because of its electron mobility and its reasonable production cost and also its friendliness to environment. But the high band gap of ZnO (3.2 eV) has impeded its use in visible light spectrum. In this project,... 

    Synthesis and Characterization of ZnO Nanostructure, Modified by Graphene and CdS for PEC Application

    , M.Sc. Thesis Sharif University of Technology Nourmohammadi, Mohammad Amin (Author) ; Moshfegh, Alireza (Supervisor)
    Abstract
    In this project, the photoelectrochemical properties of ZnO nanostructures modified by CdS and Graphene was studied. Firs, titanium foil was cut into rectangular shape with 1cm width and 3 cm length, cleaned by rinsing in acetone and ethanol and annealed at 4000C for an hour. As a result, a thin layer of titanium oxide was formed on Ti sheet. Then a layer of grapheme oxide was deposited on substrate using Electrophoretic deposition (EPD). After that, ZnO nanostructure was deposited on the TiO2 substrate using Electropulsation (EP) with 20 consecutive pulse followed by 3 minutes Electrodeposition (ED). Using SEM analysis, the morphology of ZnO was determined to be nanopetals in which the... 

    Zinc oxide as a useful and recyclable catalyst for the one-pot synthesis of 2,4,6-trisubstituted-1,3,5-trioxanes under solvent-free conditions

    , Article Industrial and Engineering Chemistry Research ; Volume 52, Issue 28 , 2013 , Pages 9538-9543 ; 08885885 (ISSN) Tayebee, R ; Nasr, A. H ; Rabiee, S ; Adibi, E ; Sharif University of Technology
    2013
    Abstract
    Different aliphatic and aromatic aldehydes such as isobutyraldehyde, ethanal, n-propanal, n-butanal, n-hexanal, n-octanal, and substituted benzaldehydes were cyclotrimerized into their corresponding 2,4,6-trialkyl-1,3, 5-trioxanes in the presence of commercial bulk zinc oxide at room temperature under neat conditions within a short span of time with high yield and excellent selectivity. Liquid products were formed as a separate phase and were decanted easily, whereas solid products were isolated by simple extraction. Effect of different additives, mol % of catalyst, kind of substrate, and reaction temperature were examined on the progress of cyclotrimerization reaction  

    ZnO nanoparticles: An efficient nanocatalyst for the synthesis of β-acetamido ketones/esters via a multi-component reaction

    , Article Catalysis Communications ; Volume 9, Issue 2 , 2008 , Pages 299-306 ; 15667367 (ISSN) Mirjafary, Z ; Saeidian, H ; Sadeghi, A ; Matloubi Moghaddam, F ; Sharif University of Technology
    2008
    Abstract
    A convenient one-pot multi-component reaction of aromatic aldehydes, enolizable ketones or β-keto esters and acetonitrile in the presence of acetyl chloride and 10 mol% ZnO nanoparticles for the synthesis of β-acetamido ketones/esters at room temperature is described. © 2007 Elsevier B.V. All rights reserved  

    The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism

    , Article Journal of Alloys and Compounds ; Volume 455, Issue 1-2 , 2008 , Pages 353-357 ; 09258388 (ISSN) Hejazi, S. R ; Madaah Hossein, H. R ; Ghamsari, M. S ; Sharif University of Technology
    2008
    Abstract
    Short ZnO nanorods and long ZnO nanowires have been produced on SiO2 and Si substrates by VLS and VS mechanisms via a double tube chemical vapor transport and condensation (CVTC) process. The role of reactants and droplet interfaces on the nucleation and growth of ZnO nanorods have been investigated. A conceptual model for nucleation of ZnO nanorods has been proposed by describing the half-oxidation and reduction reactions at the growth front. The importance of Zn vapor in the nucleation phenomena has been studied by changing starting materials. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and EDX analysis have been used to characterize ZnO nanorods and investigate the... 

    A diffusion-controlled kinetic model for growth of Au-catalyzed ZnO nanorods: Theory and experiment

    , Article Journal of Crystal Growth ; Volume 309, Issue 1 , 2007 , Pages 70-75 ; 00220248 (ISSN) Hejazi, S. R ; Madaah Hosseini, H. R ; Sharif University of Technology
    2007
    Abstract
    A kinetic model for growth of ZnO nanorods via vapor-liquid-solid (VLS) mechanism based on the bulk diffusion of Zn atoms through the Au-Zn droplet is presented. The dependences of the growth rate on size are given quantitatively. A general expression for the growth rate of nanorods during VLS process is derived. The derived formula shows the dependences of growth rate on lateral size of nanorods, concentration and supersaturation of Zn atoms in the liquid droplet. Based on the presented kinetic model the smaller nanorods have faster growth rate. Au-catalyzed ZnO nanorods are grown by chemical vapor transport and condensation (CVTC) process experimentally. Theoretical and experimental... 

    Preparation and characterization of ZnO nanoparticles by a novel sol-gel route

    , Article Materials Letters ; Volume 61, Issue 14-15 , 2007 , Pages 3265-3268 ; 0167577X (ISSN) Vafaee, M ; Sasani Ghamsari, M ; Sharif University of Technology
    2007
    Abstract
    In this study, ZnO nanoparticles with 3 to 4 nm size and spherical shape have been prepared. For the first time, TEA (triethanolamine) as a surfactant has been used for the preparation of ZnO nanoparticles. The best concentration of each component was adjusted through comparison between different sol absorption spectra. The best sol regarding its optical property was subjected to analysis by photoluminescence spectroscopy. TEM micrograph and electron diffraction pattern of these particles were obtained to represent the morphology and crystalline phase of the particles, respectively. Experimental results have shown that the prepared zinc oxide nanoparticles by this method have higher... 

    Hydrometallurgical treatment of tailings with high zinc content

    , Article Hydrometallurgy ; Volume 82, Issue 1-2 , 2006 , Pages 54-62 ; 0304386X (ISSN) Espiari, S ; Rashchi, F ; Sadrnezhaad, S. K ; Sharif University of Technology
    2006
    Abstract
    Zinc exists as smithsonite and hemimorphite in the lead flotation tailings from the Dandi mineral processing plant in north western Iran. In this research, zinc-rich tailings produced in the Dandi plant were characterized mineralogically and a leaching study was carried out to assess the effect of several parameters on the kinetics of zinc dissolution. Parameters studied included: sulfuric acid concentration, reaction time, temperature and slurry density. It was found that leaching is controlled by a single rate-controlling step with an activation energy of 23.5 kJ/mol. To overcome some of the filtration problems associated with polymerization of silicic acid, lime was added as a coagulant.... 

    Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods

    , Article Superlattices and Microstructures ; Volume 51, Issue 4 , 2012 , Pages 512-522 ; 07496036 (ISSN) Kajbafvala, A ; Ghorbani, H ; Paravar, A ; Samberg, J. P ; Kajbafvala, E ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    In this study, two different chemical solution methods were used to synthesize Zinc oxide nanostructures via a simple and fast microwave assisted method. Afterwards, the photocatalytic performances of the produced ZnO powders were investigated using methylene blue (MB) photodegradation with UV lamp irradiation. The obtained ZnO nanostructures showed spherical and flower-like morphologies. The average crystallite size of the flower-like and spherical nanostructures were determined to be about 55 nm and 28 nm, respectively. X-ray diffraction (XRD), scanning electronic microscopy (SEM), Brunauer-Emmett-Teller (BET), room temperature photoluminescence (RT-PL) and UV-vis analysis were used for... 

    Adsorptive removal of petroleum hydrocarbons from aqueous solutions by novel zinc oxide nanoparticles grafted with polymers

    , Article Petroleum Science and Technology ; Volume 34, Issue 8 , 2016 , Pages 778-784 ; 10916466 (ISSN) Salehi, B ; Hasani, A. H ; Ahmad Panahi, H ; Borghei, S. M ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Zinc oxide nanoparticles were synthesized and modified by a three-stage method. Elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning and transmission electron microscopy, and Brunauer–Emmett–Teller method were applied to characterize the nanoparticles. These nanoparticles were evaluated for toluene adsorption from aqueous solutions as a representative of petroleum hydrocarbon removal. The optimum adsorption condition achieved at pH of 6 and contact time of 30 min. The adsorption isotherms were fitted to the Langmuir model. The measured adsorption capacity was 12.8 mg g−1. This study demonstrated that these nanoparticles could be used as an... 

    Fabrication of Dye-Sensitized Solar Cells Based on TiO2-ZnO Double Layer Nanostructured Film

    , M.Sc. Thesis Sharif University of Technology Rostami, Parand (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    In the present work, one dimensional ZnO nanostructures were grown by seed-assisted hydrothermal method. Hydrothermal processing parameters were controlled to obtain ZnO nanorods with diameter lower than 120 nm. The products were characterized by FE-SEM, EDAX, XRD, PL, and ATR-FTIR analyses. ZnO nanoparticles were also synthesized via a simple solvothermal method and their photo peropeties were compared with onedimensional nanostructures. Thereafter dye-sensitized solar cells based on TiO2-ZnO double layer nanostructured film were fabricated. It was observed that DSSC efficiency increased with decreasing the thickness of the film. The highest efficiency of 2.41% was obtained  

    The Effect of Graphene Quantum Dots Addition in Modifying 1D ZnO Nanostructured Photocatalysts

    , Ph.D. Dissertation Sharif University of Technology Ebrahimi, Mahdi (Author) ; Moshfegh, Alireza (Supervisor)
    Abstract
    In this research, two type of graphene quantum dots (GQDs) have synthesized including, normal GQDs and nitrogen-doped GQDs (N-GQDs). Then, each of GQDs were deposited on the 1 dimensional zinc oxide (ZnO) nanostructures namely nanowires (NWs) and branched hierarchical (BH) systems. Then, photocatalytic activity of the samples were studied in photodegradation of methylene blue (MB) and methylene orange (MO) under visible light. First, ZnO nanowires (ZnO NWs) were fabricated by anodization of zinc sheet possessing wurtzite crystal structure with their average length and diameter measured in the range of 50-60 μm and 170-300 nm, respectively. Then, normal GQDs were synthesized by... 

    Synthesis and Characterization of a Copper Catalyst for Low Temperature Water –Gas Shift Reaction

    , M.Sc. Thesis Sharif University of Technology Rafiee Renani, Mansoureh (Author) ; Khorasheh, Farhad (Supervisor) ; Khandan, Nahid (Co-Advisor)
    Abstract
    Water Gas Shift (WGS) reaction is an old reaction in which syngas is used for producing Hydrogen. At the present time, the major application of this reaction is in fuel cells, since the necessary Hydrogen for these cells is provided by this reaction.
    The present study investigate the influence of different preparation methods on properties of Cu-ZnO/Al2O3 catalyst for water gas shift (WGS) reaction, which is now known as the Commercial catalyst for low temperature WGS, and its influence on performance of Cu-ZnO/Al2O3 catalyst to derive an optimal Cu-ZnO/Al2O3 catalyst for water gas shift (WGS) reaction. Cu-ZnO/Al2O3 catalysts was synthesized by CP, DP, DP-Ultra, IWI , CP-Urea, and... 

    Preparation of High Temperature Shift Catalyst

    , M.Sc. Thesis Sharif University of Technology Haghighi, Farzad (Author) ; Baghalhs, Morteza (Supervisor) ; Kazemeyni, Mohammad (Supervisor)
    Abstract
    Water-gas shift reaction (CO(g) + H2O(g) ↔ CO2(g) + H2(g)) is performed as the key step in the hydrogen and ammonia industrial plant. In this work, Fe/Cr/Cu high temperature water gas shift catalysts were synthesized by coprecipitation method, using sulfate precursors, in order to improve the catalytic performance and particular emphasis is placed on the catalytic activity affected by aging time, precipitating agent and ways of increasing the mechanical strength. Finally the prepared and industrial catalysts were compared when they were situated in the operating conditions (at 360oC and 2 bar) and were characterized by BET, XRD, TPR, TEM and crushing strength analysis. Catalysts being made... 

    Al doped ZnO NanoStructures by Electrodeposition & Solvothermal for Dye Sensitized Solar Cells Application

    , M.Sc. Thesis Sharif University of Technology Ghahary, Raheleh (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    ZnO semiconductor has a wide band gap (3.3eV) and high electron mobility, making it a possible candidate for an effective structure-based Dye-sensitized solar cell (DSSC) semiconductor. Efficiency of DSSC based on ZnO is lower than TiO2 due to its low chemical satability. It is well known that the energy conversion efficiency of DSSC depends on the electron transport in the photoelectrode so in this investigation we fabricated high transport photoelectrode by doping Al in ZnO nanostructures. DSSC based on Al doped and undoped ZnO nanosheet synthesized by electrochemical deposition. Current density-voltage (J-V) characterizations indicate that Al-doping in ZnO crystal structure increases...