Loading...
Search for: bond-strength
0.012 seconds
Total 66 records

    Compressive and Bond Behavior of Concrete-Filled Pultruded GFRP and PE Tubes Under Elevated Temperatures

    , Ph.D. Dissertation Sharif University of Technology Tabatabaeian Nimavard, Mojtaba (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Concrete-filled GFRP and PE tubes are composite systems using the polymeric tubes as confinement for the marine structures to extend their service life. However, elevated temperatures and thermal cycles in marine environments can affect the behavior of such composite systems. In this investigation, the effect of elevated temperatures and thermal cycles on the performance of concrete-filled pultruded GFRP tubes (CFPGT) and concrete-filled polyethylene tubes (CFPT) is assessed, respectively. For this, different parameters such as concrete core strength (30 and 60 MPa), exposure temperature (25, 100, 200, 300, and 400°C), time exposure (60 and 120 min.), number of thermal cycles (50, 100, and... 

    Analytical and Experimental Studies on Interface between Different Mortars and Brick

    , M.Sc. Thesis Sharif University of Technology Azimi Resketi, Nima (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    Usage of masonry materials in a country like Iran is still significantly high. As most of the failures during an earthquake in this system is failure caused by low ductility of cement mortars and also the high rate of carbon dioxide produced by cement. Experiences of Kermanshah earthquake in 2017 in Iran has doubled the importance of this issue. Hence, in the present investigation, an attempt to enhance the shear bond characteristics of structures constructed by masonry using green materials has been made. “Taftan” natural Pozzolan and two types of rice husk ash (RHA) was used in mix design of used mortars as a green material. In this investigation, a direct shear test (DST) device is... 

    Damage Detection and Evaluation of Repair Materials and Techniques for Concrete Bridges

    , M.Sc. Thesis Sharif University of Technology Karimi, Roya (Author) ; Joghataie, Abdoreza (Supervisor)
    Abstract
    Poor maintenance of concrete bridges in the past years in Iran, caused serious damages, so most of them need rehabilitation. The majority of repaired members are exposed to repeated damage because compatibility of repair material to substrate concrete not considered as well as weather and loading conditions. This study attempts to improve the repair achievement and durability of concrete bridges. This investigation contains two phases: preliminary study and experimental phase. Preliminary study attends to detect different types of damages of concrete bridges and their causes along with their propagation. The next part of this study discusses about various types of repair materials. In... 

    Experimental Investigation of Formability and Mechanical Properties of Composites Manufactured by Direct Roll Bonding

    , M.Sc. Thesis Sharif University of Technology Maleki, Payam (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    In this study, the ST14 low carbon steel sheet was used as a skin layer in the construction of three-layer laminates. The use of this steel was due to its high mechanical properties and excellent formability. A thermoplastic polyurethane sheet was also used as the core layer. The selection criteria of this polymer were no need for adhesive (for bonding metal to polymer) as well as proper mechanical properties (elongation and strength) and physical (density). The perfect process for manufacturing three-layer laminates is the roll bonding process. To manufacturing a laminate with the desired properties of the designer, the rolling parameters (rolling speed and thickness reduction) must be... 

    Bonding Feasibility, Mechanical Properties and Formability of Three-layered St/AZ31/St Composites Fabricated by Roll Bonding

    , M.Sc. Thesis Sharif University of Technology Abedi, Reza (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    New materials as hybrid materials or laminate composites, due to combination of many properties, can be used in many industries. The aim of this research is bonding of three-layered St/AZ31/St composite by roll-bonding process. The roll-bonding process was performed at three preheating temperatures, 340, 400 and 450 ⁰C, with thickness reduction of 30 to 68% and different thicknesses of intermediate layer (AZ31). In order to improve the bonding strength, the as-rolled specimens were annealed at constant temperature of 375 ⁰C. For evaluation of bond strength and investigating the formation of a diffusion layer, the results of peel test and microscopic images were studied. Tensile specimens... 

    Investigation on Stainless Steel - Copper Roll Bonding

    , M.Sc. Thesis Sharif University of Technology Bagherian Talkhoonche, Nasrolla (Author) ; Akbarzade, Abbas (Supervisor)
    Abstract
    Roll bonding process is commonly used for the production of multilayer sheets. In the present study, using the roll bonding process, two layer sheets of copper - stainless steel were produced. In this case bonding strength was measured by peeling test at different statges and the quality of bonding was evaluated by SEM and Stereo Electron Microscope. The cross-sections of the bonding of rolled and annealed samples was investigated by optical microscopy. Also using EDAX analysis and EDS, the chemical composition of formed transition layer and the size of its interface at different temperature are measured respectively and the change in mechanical properties was investigated by tensile test... 

    Role of Molecular Weight and Molecular Weight Distribution on Weldability and Joint Strength of Polypropylene by Hot Plate Welding

    , M.Sc. Thesis Sharif University of Technology Azhdari, Moein (Author) ; Kokabi, Amir Hossein (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    In this study, role of molecular weight and Molecular Weight Distribution (MWD) on joint strength of polypropylene was investigated by hot plate welding. Standard tensile specimens of three different co-polypropylene with low, medium and high Melt Flow Index (MFI) values (MR230C, 440L and 548R respectively) were injected and welded after cutting. Hot plate welding device was used to join specimens. Melt Flow Index and dynamic rheology tests were employed in order to study the rheological behavior of polymers melt. Furthermore tensile test was done to investigate joint strength of specimens at 150, 175 and 200 ͦ C. It was observed that in constant temperature, increasing viscosity (typically... 

    Manufacture, Mechanical Properties and Interfacial Corrosion of 316L/17-4PH Bimetals with a Nanostructured Ni Layer

    , M.Sc. Thesis Sharif University of Technology Salahi, Armita (Author) ; Simchi, Abdol Reza (Supervisor) ; Dolati, Abol Ghasem (Supervisor)
    Abstract
    Transient liquid phase (TLP) bonding of 316L/17-4PH bimetals using a thin layer of nanostructured nickel was studied. The nanostructured nickel interface was deposited through pulse current coating in a Watt bath. The TLP bonding was performed at different temperatures ranging from 1000 °C to 1300 °C using a nickel interface having different thicknesses (2-17µm) and crystallite size (14-67 nm). The microstructure of the joint bimetals and phase formation were studied using the optical and scanning electron microscopes and X-ray diffraction (XRD) method. The mechanical properties of the bimetals were evaluated by micro-hardness and shear tests. To evaluate the corrosion behavior of the... 

    Electronic structure of some thymol derivatives correlated with the radical scavenging activity: Theoretical study

    , Article Food Chemistry ; Vol. 165, issue , Dec , 2014 , p. 451-459 Jebelli Javan, Ashkan ; Jebeli Javanb, M ; Sharif University of Technology
    Abstract
    Molecules acting as antioxidants capable of scavenging reactive oxygen species (ROS) are of upmost importance in the living cell. Thymol derivatives exhibit various antioxidant activities and potential health benefits. Exploration of structure-radical scavenging activity (SAR) was approached with a wide range of thymol derivatives. To accomplish this task, the DPPH experimental assay along with quantum-chemical calculations were also employed for these compounds. By comparing the structural properties of the derivatives of interest, their antioxidant activity was explained by the formation of an intramolecular hydrogen bond and the presence of unsaturated double bond (–CHdouble bond; length... 

    A comparison between cold-welded and diffusion-bonded Al/Cu bimetallic rods produced by ECAE process

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 10 , 2013 , Pages 3014-3023 ; 10599495 (ISSN) Eslami, P ; Karimi taheri, A ; Zebardast, M ; Sharif University of Technology
    2013
    Abstract
    In this research, the application of equal channel angular extrusion process to produce both the cold-welded and diffusion-bonded Al/Cu bimetallic rods is assessed. The joints shear strength for both of the methods are measured and compared. The microstructure examinations were also carried out using scanning electron microscope equipped with EDX system and x-ray diffraction analysis. The results exhibit that the strength of the bond in cold-welded specimens is dependent on the amount of stretch and pressure at the materials interface. But in the diffusion-bonded specimens, it is depended on the struggle between the oxidation rate of the mating surfaces accompanied by inter-metallic... 

    Theoretical investigation on antioxidant activity of bromophenols from the marine red alga Rhodomela confervoides: H-atom vs electron transfer mechanism

    , Article Journal of Agricultural and Food Chemistry ; Volume 61, Issue 7 , 2013 , Pages 1534-1541 ; 00218561 (ISSN) Javan, A. J ; Javan, M. J ; Tehrani, Z. A ; Sharif University of Technology
    2013
    Abstract
    Bromophenols are known as antioxidant radical scavengers for some biomolecules such as those in marine red alga. Full understanding of the role played by bromophenols requires detailed knowledge of the radical scavenging activities in probable pathways, a focus of ongoing research. To gain detailed insight into two suggested pathways, H-atom transfer and electron transfer, theoretical studies employing first principle quantum mechanical calculations have been carried out on selected bromophenols. Detailed investigation of the aforementioned routes revealed that upon H-atom abstraction or the electron transfer process, bromophenols cause an increase in radical species in which the unpaired... 

    Bonding behavior of Al-Al2O3 laminations during roll bonding process

    , Article Materials and Design ; Volume 36 , 2012 , Pages 874-879 ; 02641275 (ISSN) Rezayat, M ; Akbarzadeh, A ; Sharif University of Technology
    2012
    Abstract
    Accumulative roll bonding (ARB) is used as a novel method to produce particle reinforced metal matrix composites (MMCs). Roll bonding of the sheets with layers of powder on their surfaces is the main stage in this process and it has been found that quality of the bonding has an important role in properties of the product. In this work, the behavior of alumina particles layer at interface during the rolling is investigated and the effects of particle size and amount of particle at interface on bonding of the commercial pure aluminum sheets are also studied. The results of peeling test indicate that presence of the powder at interface reduces the bond strength. However, it is shown that by... 

    Strength assessment and bonding study of aluminum short fiber-reinforced gypsum composites

    , Article International Journal of Damage Mechanics ; Volume 21, Issue 1 , January , 2012 , Pages 129-149 ; 10567895 (ISSN) Mohandesi, J. A ; Sangghaleh, A ; Nazari, A ; Sharif University of Technology
    2012
    Abstract
    In this study, tensile strength of gypsum-based composite with aluminum fibers up to 15 vol.% was studied. To increase the interfacial bond strength between fibers and matrix, aluminum fibers were anodized under different conditions. Single fiber pull-out tests were carried out to investigate the bond strength. The interface was examined by scanning electron microscope. The ability of the composites to withstand longitudinal tensile load was also studied by tensile tests of dog bone-shaped, randomly oriented fiber-reinforced gypsum. By the introduction of aluminum fibers in gypsum as a randomly oriented composite, considerable increment in the strength is achieved and the toughness of the... 

    Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization

    , Article Materials and Design ; Volume 32, Issue 6 , 2011 , Pages 3143-3149 ; 02641275 (ISSN) Movahedi, M ; Kokabi, A. H ; Seyed Reihani, S. M ; Sharif University of Technology
    Abstract
    Al-1100/St-12 aluminum clad steel sheets were produced using roll bonding process at different reductions in thickness and with various supplemental annealing treatments. Experiments were conducted by applying the Taguchi method to obtain optimum condition for maximizing the joint strength. The joint strengths of the bi-layer sheets were evaluated by peel test. The Al/Fe intermetallic phases at the joint interface and the peeled surfaces were examined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) and Vickers microhardness test were performed to characterize the intermetallic compounds. The results indicate that at the optimum condition of 0.50 reduction in... 

    Fabrication of copper/aluminum composite tubes by spin-bonding process: Experiments and modeling

    , Article International Journal of Advanced Manufacturing Technology ; Volume 54, Issue 9-12 , November , 2011 , Pages 1043-1055 ; 02683768 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    2011
    Abstract
    The aim of this work is to produce two layered thin-walled Cu/Al composite tube by the spin-bonding process. The process is utilized to bond the aluminum tube into the copper one at thickness reductions of 20-60% and process temperatures of 25°C, 130°C, and 230°C. The bond strength is measured by T-peeling test, and the bond interfaces are examined by metallography and scanning electron microscopy (SEM). The results show that after a threshold thickness reduction of about 30%, the bond strength increased with the amount of deformation. SEM fractography of the peel surfaces confirms that the copper oxide film is broken in a shear manner during deformation. Severe shear strains applied during... 

    Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions

    , Article Journal of Physical Chemistry C ; Volume 115, Issue 14 , 2011 , Pages 6994-7001 ; 19327447 (ISSN) Reyhani, A ; Mortazavi, S. Z ; Mirershadi, S ; Moshfegh, A. Z ; Parvin, P ; Golikand, A. N ; Sharif University of Technology
    Abstract
    We report a study on hydrogen storage in Ca, Co, Fe, Ni, and Pd decorated multiwalled carbon nanotubes (MWCNTs) by using two techniques: volumetric and electrochemical. The results showed that hydrogen molecules are adsorbed on the defect sites and transported to the spaces between adjacent carbon via diffusion through both defect sites and opened tips into the layers. Hydrogen storage capacity can be improved in the decorated MWCNT by Co, Fe, Ni, and Ca metals in two approaches: (i) H2 adsorption via Kubas interaction and (ii) dissociation of H2 molecules on the metal particles. The results reveal that Pd are more effective catalyst for hydrogen storage process. It was found that... 

    Bond strength and mechanical properties of three-layered St/AZ31/St composite fabricated by roll bonding

    , Article Materials and Design ; Volume 88 , 2015 , Pages 880-888 ; 02641275 (ISSN) Abedi, R ; Akbarzadeh, A ; Sharif University of Technology
    2015
    Abstract
    The aim of this research is bonding of three-layered St/AZ31/St composite by roll-bonding process. The roll-bonding process was performed at three preheating temperatures, 340, 400 and 450°C, with thickness reduction of 30 to 68% and different thicknesses of intermediate layer (AZ31). In order to improve the bonding strength, the as-rolled specimens were annealed at constant temperature of 375°C. For evaluation of bond strength and investigating the formation of a diffusion layer, the results of peel test and microscopic images were studied. Tensile specimens were prepared along the rolling direction to measure the mechanical properties of the composite. The results showed that by increasing... 

    Effect of intermediate nickel layer on seal strength and chemical compatibility of glass and ferritic stainless steel in oxidizing environment for solid oxide fuel cells

    , Article International Journal of Hydrogen Energy ; Volume 40, Issue 46 , 2015 , Pages 16434-16442 ; 03603199 (ISSN) Fakouri Hasanabadi, M ; Nemati, A ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The effects of intermediate nickel layer on seal strength and chemical compatibility of seal glass and interconnect materials for solid oxide fuel cells (SOFCs) were investigated. Two types of samples (metal/glass/metal sandwiches and glass coated metals) were prepared with the sheet of AISI 430 (nickel plated and uncoated) and slurry of compliant silicate sealing glass (SCN-1). The joined and coated samples were heated at 850 °C for different time durations (0.5-100 h). Tensile and impact tests were performed and SEM micrographs were used to analyze the glass/metal interaction. The results indicate that nickel plated AISI 430 shows higher adhesion strength at short durations of heating due... 

    A molecular dynamics study of bond strength and interface conditions in the Al / Al 2 O 3 metal-ceramic composites

    , Article Computational Materials Science ; Volume 109 , November , 2015 , Pages 200-208 ; 09270256 (ISSN) Sazgar, A ; Movahhedy, M. R ; Mahnama, M ; Sohrabpour, S ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract High ductility of metals as well as high strength of ceramics has made the metal/ceramic composites an attractive material for many applications requiring high strength to weight ratios. An important issue in using this material is the behavior of the material and its ceramic-metal interface under various loading, especially at high strain rate. To provide a better understanding of the interface conditions, in this work, a molecular dynamics study of the interface behavior in Al/α-Al2O3 composite as the result of tensile and shear loadings is presented. For this purpose, the reactive force field (ReaxFF) potential function is utilized. The effects of... 

    Effects of zirconia content on characteristics and corrosion behavior of hydroxyapatite/ZrO2 biocomposite coatings codeposited by electrodeposition

    , Article Surface and Coatings Technology ; Volume 262 , January , 2015 , Pages 166-172 ; 02578972 (ISSN) Shojaee, P ; Afshar, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    HAp and HAp/ZrO2 composite coatings were successfully electrodepesited on 316L stainless steel substrates in the solutions containing ZrO2 particles at different concentrations. The effects of ZrO2 content on characteristics of the coatings were investigated using X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM) and bonding strength test. Polarization and electrochemical impedance spectroscopy measurements were carried out in order to evaluate corrosion behavior of the coatings. In-vitro test in SBF and further SEM observations were performed to examine bioactivity of the coatings. HAp/ZrO2 composite coatings showed better...