Loading...
Search for: distributed-generation
0.013 seconds
Total 176 records

    Centralized optimal management of a smart distribution system considering the importance of load reduction based on prioritizing smart home appliances

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 19 , 2022 , Pages 3874-3893 ; 17518687 (ISSN) Sanaei, S ; Haghifam, M. R ; Safdarian, A ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The distribution system's economic operation is significantly impacted by the management of distributed generation (DG) resources, energy storage (ES), and controllable loads. The paper employs a smart distribution system that incorporates dispatchable and non-dispatchable DG resources, as well as battery storage, in addition to the demand response (DR) scheme. New modelling was performed in hourly steps to achieve the optimal unit commitment. In smart homes, appliances are prioritized and classified into four types: adjustable, interruptible, shiftable, and uncontrollable loads. Load reduction in smart homes is also considered based on load prioritization and customer participation in the... 

    IoT-based intelligent source–load–storage coordination scheme for prosumer campus microgrids

    , Article Frontiers in Energy Research ; Volume 10 , 2022 ; 2296598X (ISSN) Abdul Muqeet, H ; Shahzad, M ; Shehzad, M ; Akhter, J ; Almohaimeed, Z. M ; Akram, R ; Hussain, M. M ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    Electrical energy is very necessary for human life in the modern era. The rising energy prices, depletion of fossil fuels, and instability of the grid are alarming situations. So, it needs a smart solution to ensure the balance between pricing and saving natural resources. Some other issues like environmental change, limitations on installation of new transmission lines, reliability concerns, and considering the expansion in distributed energy generation technologies promise the implementation of distributed generation extensively. The integration of two or more energy supplies in a power system is known as distributed energy resource system. In this study, a university campus is taken as a... 

    On the explicit formulation of reliability assessment of distribution systems with unknown network topology: Incorporation of DG, switching interruptions, and customer-interruption quantification

    , Article Applied Energy ; Volume 324 , 2022 ; 03062619 (ISSN) Jooshaki, M ; Lehtonen, M ; Fotuhi Firuzabad, M ; Muñoz Delgado, G ; Contreras, J ; Arroyo, J. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper presents an original approach for the evaluation of reliability of active distribution networks with unknown topology. Built upon novel reformulations of conventional definitions for distribution reliability indices, the dependence of system-oriented reliability metrics on network topology is explicitly formulated using a set of mixed-integer linear expressions. Unlike previously reported works also modeling mathematically the relationship between reliability assessment and network topology, the proposed approach allows considering the impact of distributed generation (DG) while accounting for switching interruptions. Moreover, for the first time in the emerging closely related... 

    Scheduling and sizing of campus microgrid considering demand response and economic analysis

    , Article Sensors ; Volume 22, Issue 16 , 2022 ; 14248220 (ISSN) Bin, L ; Shahzad, M ; Javed, H ; Muqeet, H. A ; Akhter, M. N ; Liaqat, R ; Hussain, M. M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Current energy systems face multiple problems related to inflation in energy prices, reduction of fossil fuels, and greenhouse gas emissions which are disturbing the comfort zone of energy consumers and the affordability of power for large commercial customers. These kinds of problems can be alleviated with the help of optimal planning of demand response policies and with distributed generators in the distribution system. The objective of this article is to give a strategic proposition of an energy management system for a campus microgrid (µG) to minimize the operating costs and to increase the self-consuming energy of the green distributed generators (DGs). To this end, a real-time based... 

    Sustainable solutions for advanced energy management system of campus microgrids: model opportunities and future challenges

    , Article Sensors ; Volume 22, Issue 6 , 2022 ; 14248220 (ISSN) Muqeet, H. A ; Javed, H ; Akhter, M. N ; Shahzad, M ; Munir, H. M ; Nadeem, M. U ; Bukhari, S. S. H ; Huba, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Distributed generation connected with AC, DC, or hybrid loads and energy storage systems is known as a microgrid. Campus microgrids are an important load type. A university campus microgrids, usually, contains distributed generation resources, energy storage, and electric vehicles. The main aim of the microgrid is to provide sustainable, economical energy, and a reliable system. The advanced energy management system (AEMS) provides a smooth energy flow to the microgrid. Over the last few years, many studies were carried out to review various aspects such as energy sustainability, demand response strategies, control systems, energy management systems with different types of optimization... 

    A multi-objective framework for distributed energy resources planning and storage management

    , Article Applied Energy ; Volume 314 , 2022 ; 03062619 (ISSN) Ahmadi, B ; Ceylan, O ; Ozdemir, A ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The use of energy storage systems (ESS) and distributed generators (DGs) to improve reliability is one of the solutions that has received much attention from researchers today. In this study, we utilize a multi-objective optimization method for optimal planning of distributed generators in electric distribution networks from the perspective of multi-objective optimization. The objective is to improve the reliability of the network while reducing the annual cost and network losses. A modified version of the multi-objective sine–cosine algorithm is used to determine the optimal size, location, and type of DGs and the optimal capacity, location, and operation strategy of the ESS. Three case... 

    Energy management of Plug-In Hybrid Electric Vehicles in renewable-based energy hubs

    , Article Sustainable Energy, Grids and Networks ; Volume 32 , 2022 ; 23524677 (ISSN) Moeini Aghtaie, M ; Dehghanian, P ; Davoudi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Proliferation of Plug-in Hybrid Electric Vehicles (PHEVs) and integration of various distributed generation (DG) technologies have been recognized to play an undeniable role in modern power systems of the future. In order to effectively model the interactions of these two technologies, this paper develops a multi-criteria framework to coordinate the charging behaviors of PHEVs within an energy hub platform. In this regard, the desirable charging profiles from the viewpoint of both PHEV owners and hub manager are first captured and reported to the PHEVs Coordinator Entity (PCE). The PCE, then, runs an optimization framework in which several criteria including the PHEV owners’ convenience,... 

    An Milp model for switch, DG, and tie line placement to improve distribution grid reliability

    , Article IEEE Systems Journal ; 2022 , Pages 1-12 ; 19328184 (ISSN) Zare Bahramabadi, M ; Ehsan, M ; Farzin, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Remote controlled switches (RCSs) have the ability to isolate the faulted area from other parts of the distribution system. On the other hand, the dispatchable distributed generators (DDGs) and tie lines can supply the interrupted loads after fault occurrence trough microgrids and reduce the outage time. In this regard, this article proposes a planning model for simultaneous placement of RCSs, DDGs, and tie lines to improve distribution system reliability. The presence of renewable distributed generations (RDGs) and energy storage systems, which have an increasing penetration in today's distribution networks are also considered. Moreover, two different practical load shedding methods are... 

    Probabilistic analysis to analyze uncertainty incorporating copula theory

    , Article Journal of Electrical Engineering and Technology ; Volume 17, Issue 1 , 2022 , Pages 61-71 ; 19750102 (ISSN) Li, B ; Shahzad, M ; Munir, H. M ; Nawaz, A ; Fahal, N. A. M ; Khan, M. Y. A ; Ahmed, S ; Sharif University of Technology
    Korean Institute of Electrical Engineers  2022
    Abstract
    The emerging trend of distribution generation with existing power system network leads uncertainty factor. To handle this uncertainty, it is a provocation for the power system control, planning, and operation engineers. Although there are numerous techniques to model and evaluate these uncertainties, but in this paper the integration of Copula theory with Improved Latin-hypercube Sampling (ILHS) are incorporated for Probabilistic load Flow (PLF) evaluation. In probabilistic research approaches, the dominant interest is to achieve appropriate modelling of input random variables and reduce the computational burden. To address the said problem, Copula theory is applied to execute the modelling... 

    Voltage and frequency consensusability of autonomous microgrids over fading channels

    , Article IEEE Transactions on Energy Conversion ; Volume 36, Issue 1 , 2021 , Pages 149-158 ; 08858969 (ISSN) Mahdian Dehkordi, N ; Khorsandi, A ; Baghaee, H. R ; Sadati, N ; Shirvani Moghaddam, S ; Guerrero, J. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this article, a novel cooperative secondary voltage/frequency control considering time-varying delays and noises in fading channels is presented for an autonomous alternating current (AC) voltage sourced-based converter (VSC)-based microgrid (MG), including inverter-interfaced distributed generations (DGs). Fading phenomenon makes complex random fluctuations on the voltage and frequency of every DG received from its neighbor DGs. In multi-agent cooperative systems, in addition to the total additive noise and time-variant delay, a multiplicative complex random variable is considered to model the main received signal and its replicas due to multipath propagation. The proposed... 

    Reliability assessment of distribution system with the integration of photovoltaic and energy storage systems

    , Article Sustainable Energy, Grids and Networks ; Volume 28 , 2021 ; 23524677 (ISSN) Ostovar, S ; Esmaeili Nezhad, A ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    With the current focus on energy and the environment, efficient integration of renewable energies, especially solar energy into power systems, is becoming indispensable. Moreover, to fully capture solar potentials and to recognize the unique characteristics associated with solar energy in power systems reliability assessment, a profound investigation is needed. Accordingly, this paper attempts to establish a comprehensive analytical approach for modeling the reliability of a hybrid system (Photovoltaic (PV) system with Energy Storage System (ESS)). To this end, the output of the PV system is modeled by a multi-state model, and the ESS system is modeled as a two-state Markov model. Moreover,... 

    Distribution system resilience enhancement via mobile emergency generators

    , Article IEEE Transactions on Power Delivery ; Volume 36, Issue 4 , 2021 , Pages 2308-2319 ; 08858977 (ISSN) Taheri, B ; Safdarian, A ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Natural calamities always have been a serious threat to energy systems. In this regard, this paper constitutes a stochastic mixed integer linear programming (SMILP) model to enhance the resilience of power distribution systems to deal with disastrous events. In particular, the proposed model is developed to enhance both survivability and restoration capability of distribution systems. In this regard, to increase the preparedness of the power distribution system, the system operator reconfigures the network by utilizing remote-control switches (RCSs), manual switches (MSs), and distributed generations (DGs) before the natural calamity hits. The proposed model contemplates the traveling time... 

    Optimal energy management of a campus microgrid considering financial and economic analysis with demand response strategies

    , Article Energies ; Volume 14, Issue 24 , 2021 ; 19961073 (ISSN) Javed, H ; Muqeet, H. A ; Shehzad, M ; Jamil, M ; Khan, A. A ; Guerrero, J. M ; Sharif University of Technology
    MDPI  2021
    Abstract
    An energy management system (EMS) was proposed for a campus microgrid (μG) with the incorporation of renewable energy resources to reduce the operational expenses and costs. Many uncertainties have created problems for microgrids that limit the generation of photovoltaics, causing an upsurge in the energy market prices, where regulating the voltage or frequency is a challenging task among several microgrid systems, and in the present era, it is an extremely important research area. This type of difficulty may be mitigated in the distribution system by utilizing the optimal demand response (DR) planning strategy and a distributed generator (DG). The goal of this article was to present a... 

    Decentralized model predictive voltage control of islanded DC microgrids

    , Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 Abbasi, M ; Mahdian Dehkordi, N ; Sadati, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This paper proposes a novel decentralized control approach for islanded direct-current (DC) microgrids (MGs) based on model predictive control (MPC) to regulate the distributed generation unit (DGU) output voltages, i.e. the voltages of the point of common coupling (PCC). A local controller is designed for each DGU, in the presence of uncertainties, disturbances, and unmodeled dynamics. First, a discrete-time state-space model of an MG is derived. Afterward, an MPC algorithm is designed to perform the PCC voltage control. The proposed MPC scheme ensures that the PCC voltages remain within an acceptable range. Several simulation studies have been conducted to illustrate the effectiveness of... 

    A novel management scheme to reduce emission produced by power plants and plug-in hybrid electric vehicles in a smart microgrid

    , Article International Journal of Environmental Science and Technology ; Volume 17, Issue 5 , 2020 , Pages 2529-2544 Ashrafi, R ; Soleymani, S ; Mehdi, E ; Sharif University of Technology
    Springer  2020
    Abstract
    Recently, with the growth and development of distributed generation (DGs) and energy storage systems (ESSs), as well as smart control equipment, microgrids (MGs) have been developed. Microgrids are comprised of a limited number of constitutive parts, including loads, DGs, ESSs, and electric vehicles (EVs). This paper presents a novel scheme to manage active and reactive powers, based on DGs, ESSs, and EVs to reduce the total operation cost including power generation and emission costs. Simultaneous management of active and reactive power makes it possible to consider grid operation constraints together. In the proposed schedule, the vehicles are assumed to be plug-in hybrid electric... 

    Toward small scale renewable energy hub-based hybrid fuel stations: appraising structure and scheduling

    , Article IEEE Transactions on Transportation Electrification ; Volume 6, Issue 1 , 2020 , Pages 267-277 Faridpak, B ; Alahyari, A ; Farrokhifar, M ; Momeni, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In recent years, there has been a rapid change in the portfolio of road vehicles. This transformation needs to be supported by reshaping fuel stations. The existing structures can be modified to supply multiple vehicle types while utilizing renewable energies. In this article, we introduce a hybrid fuel station (HFS) to supply both electric and natural gas vehicles. We incorporate an energy hub and thoroughly explain the structure and components in detail. The configuration of the proposed HFS includes renewable energy sources (RESs), a power-to-gas unit (P2G), a natural gas distributed generator (NGDG), an energy storage device, a compressor, and a gas storage device. The optimal operation... 

    Micro-grid stabilizer design using sliding mode controller

    , Article International Journal of Electrical Power and Energy Systems ; Volume 116 , March , 2020 Mousavi Somarin, H ; Parvari, R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Future of the network stability is endangered by increasing the number of Distributed Generation (DG) and Renewable Energy Source (RES) units. The idea of the Virtual Synchronous Machine (VSM) has been raised to control the power electronic-based DG/RES converters in order to have better integration with the grid. This paper introduces a new stabilizer design for VSM-based converters to guarantee the stability of the micro-grid (MG). In this regard, the Sliding Mode Control (SMC) theory, which is robust against the disturbances and uncertainties, is employed to cope with the intermittent and nonlinear nature of DGs. The mutual operation of the proposed inverter and MG stabilizer has the... 

    A model for stochastic planning of distribution network and autonomous DG units

    , Article IEEE Transactions on Industrial Informatics ; Volume 16, Issue 6 , August , 2020 , Pages 3685-3696 Jooshaki, M ; Farzin, H ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    This article presents a mixed-integer linear stochastic model for the optimal expansion planning of electricity distribution networks and distributed generation (DG) units. In the proposed framework, autonomous DG units are aggregated and modeled using the well-known energy hub concept. In this model, the uncertainties of heat and electricity demand as well as renewable generation are represented using various scenarios. Although this is a standard technique to capture the uncertainties, it drastically increases the dimensions of this optimization problem and makes it practically intractable. In order to address this issue, a novel iterative method is developed in this article to enhance the... 

    Reliability based joint distribution network and distributed generation expansion planning

    , Article 2020 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2020, 18 August 2020 through 21 August 2020 ; September , 2020 Kabirifar, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Pourghaderi, N ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this paper the reliability of distribution network is modeled in joint multistage expansion planning of distribution network assets and distributed generations (DGs). The imposed costs due to network reliability weakness are considerable in the distribution level. Therefore in the proposed model distribution network operator (DNO) considers the costs associated with load interruptions in the planning problem. In this regard, reliability evaluation of the network is modeled in the joint multistage distribution network expansion planning (MDNEP) problem in an integrated manner while the network topology is unknown until the planning problem is not solved. In the proposed joint MDNEP problem... 

    Incorporating flexibility requirements into distribution system expansion planning studies based on regulatory policies

    , Article International Journal of Electrical Power and Energy Systems ; Volume 118 , 2020 Karimi Arpanahi, S ; Jooshaki, M ; Moeini Aghtaie, M ; Abbaspour, A ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Increasing penetration of renewable energy sources with intermittent generation calls for further flexibility requirements for efficient as well as the safe operation of power systems. Considering the significant growth of distributed energy resources in distribution systems, a promising approach to fulfill such requirements is to deploy local flexibility sources at the distribution level. Nonetheless, due to the monopoly nature of electricity distribution business, effective regulations are required to direct distribution companies toward fulfilling such goals. Accordingly, this paper aims at proposing various policies to motivate distribution companies to enhance the flexibility of their...