Loading...
Search for: modified-couple-stress-theories
0.008 seconds

    Formulation for static behavior of the viscoelastic Euler-Bernoulli micro-beam based on the modified couple stress theory

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 9, Issue PARTS A AND B , 2012 , Pages 129-135 ; 9780791845257 (ISBN) Taati, E ; Nikfar, M ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this work an analytical solution is presented for a viscoelastic micro-beam based on the modified couple stress theory which is a non-classical theory in continuum mechanics. The modified couple stress theory has the ability to consider small size effects in micro-structures. It is strongly emphasized that without considering these effects in such structures the solution will be wrong and not suitable for designing systems in micro-scales. In this study correspondence principle is used for deriving constitutive equations for viscoelastic material based on the modified couple stress theory. Governing equilibrium equations are obtained by considering an element of micro-beam. Closedform... 

    On pull-in instabilities of microcantilevers

    , Article International Journal of Engineering Science ; Volume 87 , February , 2015 , Pages 23-31 ; 00207225 (ISSN) Rahaeifard, M ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this paper the static deflection and pull-in instability of electrostatically actuated microcantilevers is investigated based on the strain gradient theory. The equation of motion and boundary conditions are derived using Hamilton's principle and solved numerically. It is shown that the strain gradient theory predicts size dependent normalized static deflection and pull-in voltage for the microbeam while according to the classical theory the normalized behavior of the microbeam is independent of its size. The results of strain gradient theory are compared with those of classical and modified couple stress theories and also experimental observations. According to this comparison, the... 

    Size-dependent analysis of thermoelastic damping in electrically actuated microbeams

    , Article Mechanics of Advanced Materials and Structures ; Volume 28, Issue 9 , 2021 , Pages 952-962 ; 15376494 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    This paper presents an analytical expression for the thermoelastic damping (TED) in electrically actuated microbeams based on the nonclassical continuum theory of the modified couple stress (MSC) and the nonclassical heat conduction model of the dual-phase-lag (DPL). This expression for TED captures small-scale effects. The coupled equations of motion and heat conduction are first derived. Then, the set of coupled governing equations are analytically dealt, and the real and imaginary parts of frequency are extracted in the framework of the complex frequency approach. Next, a closed-form relation for describing TED in electrically actuated microbeams is obtained which captures the small-scale... 

    Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties

    , Article Engineering with Computers ; Volume 37, Issue 4 , 2021 , Pages 3629-3648 ; 01770667 (ISSN) Shariati, A ; Habibi, M ; Tounsi, A ; Safarpour, H ; Safa, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The stability analysis of cantilevered curved microtubules in axons regarding various size elements and using the generalized differential quadrature method for solving equations is reported. The impacts of covering MAP Tau proteins along with cytoplasm are taken into account as the elastic medium. Curved cylindrical nanoshell considering thick wall is used to model the microtubules. The factor of length scale (l/R = 0.2) used in modified couple stress theory would result in more accuracy when it comes to comparison with experiments, while alternative theories presented in this paper provide less precise outcomes. Due to the reported precise results, at the lower value of the time-dependent... 

    Size-dependent dynamic behavior of microcantilevers under suddenly applied DC voltage

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Vol. 228, Issue. 5 , May , 2014 , pp. 896-906 ; ISSN: 09544062 Rahaeifard, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    Abstract
    This paper investigates the dynamic behavior of microcantilevers under suddenly applied DC voltage based on the modified couple stress theory. The cantilever is modeled based on the Euler-Bernoulli beam theory and equation of motion is derived using Hamilton's principle. Both analytical and numerical methods are utilized to predict the dynamic behavior of the microbeam. Multiple scales method is used for analytical analysis and the numerical approach is based on a hybrid finite element/finite difference method. The results of the modified couple stress theory are compared with those from the literature as well as the results predicted by the classical theory. It is shown that the modified... 

    Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory

    , Article International Journal of Engineering Science ; Volume 54 , May , 2012 , Pages 99-105 ; 00207225 (ISSN) Baghani, M ; Sharif University of Technology
    2012
    Abstract
    In this paper an analytical solution for size-dependent response of cantilever micro-beams is presented. Using the modified couple stress theory, the small scale effects are accounted for. Employing the Modified Variational Iteration Method, efficient and accurate analytical expressions for the deflection of the micro-beam are presented. Very good agreement is observed between the present work results and available experimental data. This study may be helpful to characterize the size-dependent mechanical properties of MEMS. Consequently, the proposed analytical solution can be used as an efficient tool for studying the effects of the material or geometrical parameters on small scale devices... 

    Analytical solutions for the size dependent buckling and postbuckling behavior of functionally graded micro-plates

    , Article International Journal of Engineering Science ; Volume 100 , 2016 , Pages 45-60 ; 00207225 (ISSN) Taati, E ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this study, the buckling and postbuckling analysis of FG micro-plates under different kinds of traction on the edges is investigated based on the modified couple stress theory. The static equilibrium equations of an FG rectangular micro-plate as well as the boundary conditions are derived using the principle of minimum total potential energy. The analytical solutions are developed for three case studies including: simply supported micro-plates subjected to uniform transverse load and biaxial tractions, clamped-simply supported micro-plates under uniform transverse load and axial traction, and simply supported micro-plates subjected to shear traction. All plate properties except the length... 

    Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 322 , 2017 , Pages 615-632 ; 00457825 (ISSN) Shafiei, N ; Mirjavadi, S. S ; MohaselAfshari, B ; Rabby, S ; Kazemi, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    This study presents analysis on the vibration behavior of the two-dimensional functionally graded (2D-FG) nano and microbeams which are made of two kinds of porous materials for the first time, based on Timoshenko beam theory. The material of the nano and microbeams is modeled as 2D-FGMs according to the power law. The Eringen's nonlocal elasticity and the modified couple stress theories are used, respectively in case of nano and microbeams. The boundary conditions are considered as clamped (CC), simply supported (SS), clamped–simply supported (CS), and cantilever (CF). The governing equations are solved using the generalized differential quadrature method (GDQM). The effects of FG power... 

    The couple stress-based nonlinear coupled three-dimensional vibration analysis of microspinning Rayleigh beams

    , Article Nonlinear Dynamics ; Volume 87, Issue 2 , 2017 , Pages 1315-1334 ; 0924090X (ISSN) Asghari, M ; Hashemi, M ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    The nonlinear coupled three-dimensional vibrations of microspinning Rayleigh beams are analytically studied utilizing the modified couple stress theory to take into account the small-scale effects. The considered nonlinearity is of geometrical type due to the mid-plane stretching. The rotary inertia and gyroscopic effects are both included in the formulation. Governing equations of motion are derived with the aid of the Hamilton Principle and then transformed into complex form. Then, the Galerkin and multiple scales methods are utilized to solve the nonlinear partial differential equation. Approximate analytical expressions for nonlinear natural frequencies of the spinning beams in forward... 

    Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale timoshenko beam

    , Article JVC/Journal of Vibration and Control ; Volume 24, Issue 18 , 2018 , Pages 4211-4225 ; 10775463 (ISSN) Mirjavadi, S. S ; Mohasel Afshari, B ; Shafiei, N ; Rabby, S ; Kazemi, M ; Sharif University of Technology
    Abstract
    This work is aimed to present analysis on the thermal vibrational behavior of two-dimensional functionally graded porous microbeams based on Timoshenko beam theory. According to the power law function, the material composition and so the material properties are varying along thickness and axis of the microbeam. The governing equations are derived on the basis of the couple stress theory and the generalized differential quadrature method is used to solve the equations. The temperature gradient is considered to be uniform and nonuniform across the thickness of the microbeam. The results are presented to show the effect of temperature change, porosity, functionally graded and axially... 

    Magnetic field effect on free vibration of smart rotary functionally graded nano/microplates: a comparative study on modified couple stress theory and nonlocal elasticity theory

    , Article Journal of Intelligent Material Systems and Structures ; Volume 29, Issue 11 , 2018 , Pages 2492-2507 ; 1045389X (ISSN) Shojaeefard, M. H ; Saeidi Googarchin, H ; Mahinzare, M ; Eftekhari, S. A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    In this article, free vibration behavior of a rotating nano/microcircular plate constructed from functionally graded magneto-elastic material is simulated with the first-order shear deformation theory. For the sake of comparison, the nonlocal elasticity theory and the modified couple stress theory are employed to implement the small size effect in the natural frequencies behavior of the nano/microcircular plate. The governing equations of motion for functionally graded magneto-elastic material nano/microcircular plates are derived based on Hamilton’s principle; comparing the obtained results with those in the literature, they are in a good agreement. Finally, the governing equations are... 

    On buckling and post-buckling behavior of functionally graded micro-beams in thermal environment

    , Article International Journal of Engineering Science ; Volume 128 , July , 2018 , Pages 63-78 ; 00207225 (ISSN) Taati, E ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study provides an exact solution for the size dependent buckling and post-buckling behavior of functionally graded (FG) micro-beams with arbitrary boundary conditions which are subjected to combined thermo-mechanical loading. To this end, a theoretical formulation including the effects of size dependency, elastic foundation and uniform temperature distribution is first derived using the modified couple stress theory and through the principle of minimum total potential energy. Next, the nonlinear equations governing bending and stretching behavior of FG micro-beams are uncoupled to a fourth-order ordinary differential equation. Finally, the differential operator method is utilized to... 

    Elasticity formulation for motion equations of couple stress based micro-rotating disks with varying speeds

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Bagheri, E ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    The elasticity formulation for equations of motion of micro-rotating disks in the presence of angular acceleration as well as the corresponding boundary conditions are developed based on the non-classical continuum theory of couple stress. The system of the boundary value problem is derived on the basis of the variational method. Analytical elasticity solutions to the system of equations are then provided. Based on the elasticity solution, the mechanical responses, including the displacement and stress fields, for varying-speed micro-rotating disks are studied. In a numerical case study, the effect of the couple stresses on the distribution of stress and displacement components are... 

    Elasticity formulation for motion equations of couple stress based micro-rotating disks with varying speeds

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Bagheri, E ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    The elasticity formulation for equations of motion of micro-rotating disks in the presence of angular acceleration as well as the corresponding boundary conditions are developed based on the non-classical continuum theory of couple stress. The system of the boundary value problem is derived on the basis of the variational method. Analytical elasticity solutions to the system of equations are then provided. Based on the elasticity solution, the mechanical responses, including the displacement and stress fields, for varying-speed micro-rotating disks are studied. In a numerical case study, the effect of the couple stresses on the distribution of stress and displacement components are... 

    Effects of couple stresses on the in-plane vibration of micro-rotating disks

    , Article JVC/Journal of Vibration and Control ; Volume 26, Issue 13-14 , 2020 , Pages 1246-1259 Bagheri, E ; Jahangiri, M ; Asghari, M ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    Micro-rotating disks are extensively used in micro-electromechanical systems such as micro-gyroscopes and micro-rotors. Because of the sensitivity of these elements, enough knowledge about the mechanical behavior of these structures is an essential matter for designers and fabricators. The small-scale effects on the in-plane free vibration of such micro-disks present an important aspect of the mechanical behavior of these elements. The small-scale effects on the in-plane free vibration of these micro-disks are investigated in this study using the modified couple stress theory. By using the Hamilton principle, the partial differential equations governing the coupled radial and tangential... 

    Torsional vibration induced by gyroscopic effect in the modified couple stress based micro-rotors

    , Article European Journal of Mechanics, A/Solids ; Volume 81 , May–June , 2020 Jahangiri, M ; Asghari, M ; Bagheri, E ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, the small-scale effects in the torsional vibration of the micro-rotors with eccentric micro-disks are investigated based on the modified couple stress theory. The torsional deformation of the micro-shaft described by function φ(x,t) is considered to be independent of the flexural deformation described by functions v(x,t) and w(x,t). Using Hamilton's principle, the system of coupled nonlinear governing partial differential equations of motion and the associated boundary conditions are derived. The system of equations includes one corresponding to the torsional deformation and two others corresponding to the flexural deformation. By employing the Galerkin method, the system... 

    Static and Dynamic Analysis of Nano Beams based on Second Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Kamali, Farhad (Author) ; Eskandari, Morteza (Supervisor)
    Abstract
    In this thesis, static and dynamic analysis of nano beams based on second strain gradient theory is presented. Due to their small sizes, nano electro mechanical devices (NEMS) hold tremendous promise for novel, versatile and very sensitive devices for different applications ranging from actuators, transducers and also mass, force, light and frequency detectors. Therefore accurate modeling and analysis of such devices has an important role in their design and performance improvement. Neglecting the size effect, traditional theory of elasticity can not be suitable to predict mechanical behavior of these systems and so, it should be used non-classical theories which include size dependency... 

    Formulation for Analyzing of the Functionally Graded Kirchhoff Plate Based on the Modified Couple Stress Theory

    , M.Sc. Thesis Sharif University of Technology Taati, Ehsan (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    In this project, a size-dependent formulation is presented for mechanical analyses of inhomogeneous micro-plates based on the modified couple stress theory. The modified couple stress theory as a non-classical continuum theory has the ability to consider the small size effects in the mechanical behavior of the structures.The material properties are supposed arbitrarily to vary through the thickness of the plate. The governing differential equations of motion are derived for functionally graded plates utilizing variational approach. Based on the derived formulation, the static and free-vibration behaviors as well as buckling analysis of a rectangular functionally graded micro-plate are... 

    Bending Analysis of Rectangular FG Micro Plates using Modified Couple Stress Theory and first Order Shear Deformation Theory

    , M.Sc. Thesis Sharif University of Technology Yekani, Mohammad Amin (Author) ; Fallah Rajabzadeh, Famida (Supervisor) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    Based on the modified couple stress and Mindlin plate theories, a Levy type solution is presented for bending and vibration analysis of rectangular isotropic micro plates with simple supports at opposite edges and different boundary conditions at the other two ones. Modified couple stress theory is taken into account to capture the size effect and the governing equations are derived using Hamilton's principle, and solved by Levy solution and space-state method. The results are verified with the existing ones in the literature. As a benchmark, additional tables for vertical deflections and free vibrations of plate with various boundary conditions are presented  

    Analysis of Thermoelastic Damping in Microbeams and Microplates Based on the Non-Classical Continuum Mechanics and Heat Conduction Theories

    , Ph.D. Dissertation Sharif University of Technology Borjalilou, Vahid (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Due to the features like small dimensions, low manufacturing cost and low power consumption, micro-electromechanical systems (MEMS) are widely utilized in engineering applications. Many experimental investigations have indicated that the mechanical behavior of constructive microelements of these systems isn’t predictable by classical continuum theory. Therefore, to analyze the behavior of microelements, the non-classical continuum theories which can capture size effects should be utilized. On the other hand, various experimental observations have confirmed that thermoelastic damping (TED) is a dominant source of energy dissipation in microelements, in contrast to the non-small parts and...